Два рода зарядов и как они получаются. Электризация тел. Два рода зарядов. Закон сохранения электрического заряда. III. Изучение нового материала

1

Тема урока: Электризация тел. Два рода электрических зарядов

(8 класс)

Цель урока:

познакомить учащихся с историей зарождения учения об электричестве, ввести понятие «Электрический заряд», «электризация, научить обнаруживать электрические заряды, на телах, потертых друг о друга и доказать, что существуют два рода зарядов; продолжить формирование умений работать с приборами и оборудованием.

Демонстрации:

электризация тел, 2 рода электрических зарядов, презентация, выполненная с использованием компьютерных дисков «Электронные уроки и тесты. Электрические поля», «Физикон. Библиотека наглядных пособий» и др.

Ход урока.

    Краткий анализ ошибок, допущенных в контрольной работе по теме «Тепловые явления», рекомендации по их устранению.

    Изучение нового материала.

Прежде чем объявить тему нашего сегодняшнего урока я хочу озвучить следующие ситуации и попрошу вас в конце урока ответить на вопросы, есть ли между ними общие закономерности, насколько они уместны на сегодняшнем уроке?

(Ситуации проецируются на экран

    Между тучами сверкнула молния.

    Генеральная уборка на кухне была в самом разгаре. Вымыв пол, Шерлок Холмс взялся за мебель. Полированную поверхность кухонных шкафов он энергично протирал сухой тряпкой из синтетической ткани, а окрашенную масляной –сырой. Результат превзошел все ожидания. Кухня сияла идеальной чистотой.

    Заметка из газеты. « Было уже за полночь, когда рабочий Брянской нефтебазы А. Третьяков, заправив 8 цистерн, авиационным бензином, перевел наливной шланг в очередную порожнюю емкость. Едва шланг коснулся горловины цистерны, как высоко вверх взметнулся 15- метровый оранжево-яркий столб огня. Мощной взрывной волной Третьякова отбросило далеко от цистерны. Взрыв произошел из-за несоблюдения безопасности труда»

Предполагаемый ответ: речь идет об электрических явлениях. Ведь молния это эл. явление. Значит и остальные?

2

Да, действительно сегодня на уроке мы поведем речь об очень интересных явлениях. Вообще слово «электричество прочно вошло в наш обиход. У

каждого дома есть множество бытовых эл. приборов. Без электричества не обойтись ни на транспорте, ни в с/х, ни в быту, и т.д.

Тема сегодняшнего урока звучит так: электризация тел. Электрический заряд. 2 рода Эл. зарядов.(однокоренные слова)

План работы

Выяснить: 1. Происхождение терминов «электричество, эл.заряд»

2. Как осуществить электризацию тел. Какие 2 рода электрических зарядов существуют? Как взаимодействуют наэлектризованные тела? Как обнаружить, наэлектризовано тело или нет?

3. Провести эксперименты по электризации, объяснить наблюдаемые явления.

4. Практическое значение электризации.

Проблемный эксперимент по электризации тел.

    На бутылке с водой укреплена деревянная линейка. Подносим эбонитовую палочку, потертую о шерсть. (Линейка приходит в движение).

    Заменяем линейку на мет. фольгу, сложенную неск. раз.(Фольга приходит в движение).

    Заряж. кусочки бумаги от наэлектризованной палочки (стеклянной и эбонитовой), «поднимаем человечков».

Явление, которое мы только что наблюдали (способность тел притягивать другие тела, после того как их натерли), наз. электризацией тел, или говорят, что им сообщен электрический заряд. Такая электризация еще наз. статическим электричеством.

Приходилось ли вам наблюдать такие явления?

Способность тел после натирания (кстати, не обязательно трения, достаточно тело просто привести в контакт или даже подвергнуть его деформации) притягивать мелкие предметы и не только (линейка большая, а бумажки мелкие) была известна в 6 веке до н.э .

Греческий философ Фалес Милетский обнаружил, что янтарь, потертый о мех, приобретает свойства притягивать пушинки, соломинки,

(Рассказывает ученик)

Легенда гласит, что дочь Фалеса пряла шерсть янтарным веретеном. Уронив его однажды в воду, стала обтирать веретено шерстяным хитоном и заметила, что к веретену пристали несколько ворсинок и чем сильнее она вытирала веретено, тем больше налипало ворсинок. Девица рассказала отцу, тот не замедлил провести эксперимент с различными изделиями из янтаря и обнаружил, что все они после натирания вели себя одинаково.

3

Именно от слова янтарь произошло слово «электричество

У .Первые научные представления об электричестве были изложены придворным врачом англ. королевы Елизаветы Уильямом Гильбертом (1544-1603 )(К),

который доказал, что способностью натертого янтаря обладают: не только стекло, сургуч, сера и притягивают они не только соломинки, но и металлы, дерево, листья, камешки, комочки земли и даже воду. Дома можно провести такой эксперимент…(притяжение струйки воды к наэлектризованной палочке).

В.Сколько тел участвует в электризации?

1 эксперимент .

Положить на полоску из бумаги полоску из полиэтилена. Прижимая тыльной стороной ладони, проглаживаем их. Затем разведем в стороны и медленно сближаем. Что наблюдается?. Полоски притягиваются друг к другу. Возьмем 2 кусочка распушенной ваты, поднесем к бумажной полоске и сразу же к пленке. Пушок притягивается и к бумаге, и к пленке .

    эксперимент с гильзой из станиоля. (Она притягивается и к стеклянной палочке, потертой о бумагу, и к листу бумаги.).

    эксперимент стеклянная палочка, потертая о лист резины, притягивает легкие бумажки и резина тоже. Вывод, в процессе электризации участвуют 2 тела и 2 тела электризуются.

Эксперименты о существовании двух родов электрических зарядов.

На шелковой нити подвешена гильза из станиоля.

1 Поднесем к ней палочку из стекла, потертую о шелк или бумагу (сначала гильза коснется, а потом отталкивается от палочки)

2. Поднесем к ней эбонитовую палочку, потертую о шерсть

3. Поднесем стеклянную палочку, потертую о резину

4. Опыт по электризации двух султанчиков с пом. электроф. машины .(К)

5. Опыт с «парящей ваткой» или движение ее в поле Эл. машины.

Фр. Физик Шарль Дюфе в 1730 году изучал взаимодействие наэлектризованных тел. Он заметил, что в одних случаях такие тела притягиваются, к смоляной палочке, а в другом случае отталкиваются друг от друга, например, две стеклянные палочки, потертые о шелк, отталкиваются друг от друга, но притягиваются к эбонитовой, потертой о шерсть.. Он объяснил это тем, что существует 2 рода электричества «стеклянное» и

« смоляное». Тела, заряженные электричеством одного рода отталкиваются, а разноименные притягиваются . В 1778 году американский физик и

4 политический деятель Бенджамин Франклин назвал «стеклянное электричество» положительным, а «смоляное»- отрицательным

Эксперимент.

Перед его проведением коротко рассказать о конструкции электрометра , и вкладе Рихмана.

Потереть эбонитовую палочку о сукно и, обернув ее сукном положили внутрь полого шара электрометра. Вынули палочку из сукна, стрелка при этом отклоняется. Почему?

Вставили палочку внутрь сукна, стрелка возвращается в нулевое положение.

Вывод. Заряды не возникают и не исчезают, а только разделяются, при этом на обоих соприкасающихся при трении телах оказываются равные по мод. , но противоположные по знаку заряды.

Первичное закрепление

«Слабое звено»

1.Эти явления наблюдали в древности.

2. Электрон в переводе с греческого яз.

3. Одно или два тела электризуются при трении?

4 Какие 2 рода эл. зарядов сущ. в природе?

5.Кто ввел термины «Стеклянное и смоляное» электричество?

6.Как наэлектризовать зарядами разных знаков стеклянную бутылку и лоскут кожи, имея в руках эти 2 предмета?

7. Как взаимодействуют между собой 2 эбонитовые палочки, наэлектризованные трением о мех?

8.При окраске пульверизатором метал. поверхности ей сообщают заряд одного рода, а капелькам краски заряд противоположного знака. Для чего это нужно делать? (Краска равномерно ложится).

9. Обычно говорят, что волосы, наэлектризованные при их расчесывании, притягиваются к гребню. А будет ли правильно выражение «Гребенка притягивается волосами?» (Да, т.к. действие не является односторонним).

( приложение отдельно, на усмотрение учителя, например, объяснение наблюдаемых явлений, изготовление прибора для фиксирования наличия наэлектризованности тел)

Во время отчета групп

объяснение наблюдаемых явлений:

1.При прокачке воздуха через рез. трубку происходит электризация резины и движущегося воздуха. Задаю вопрос, а если по шлангу будет подаваться горючее? Можно завести разговор о третьей ситуации (Третьякове).

5 2.При трении сухого песка происходит электризация полости шара, электрометр фиксирует эл. заряд.

3.И т.д.

Затем демонстрируется видео-сюжет «Гроза»,

после которого сообщается о вкладе в исследование атмосф. эл. явлений М.В. Ломоносова и Академика Петербургской Академии наук, друга М.В. Ломоносова,Георга Рихмана.

Возвращение ко второй ситуации.

Полированные поверхности при трении их синтетической тканью электризуются и приобретают вместе с находящейся на них пылью электрический заряд; ткань при этом тоже получает электрический заряд, но другого знака.. Вследствие этого пыль и ткань притягиваются друг к другу, и пыль плотно оседает на тряпке.. Окрашенные масляной краской поверхности при трении не электризуются, поэтому пыль с них удаляют влажной тряпкой, которая смачивает пыль, заставляя ее прилипать к ткани.

Проверочная тестовая работа. (Прилагается отдельно на усмотрение учителя).

(Взаимопроверка по ответам на тыльной стороне доски)

Подведение итогов работы.

Дом. Задание :

Проделать эксперимент и объяснить его.

    Возьмите толстый лист из орг. стекла.. Тщательно потрите его куском газеты.. Возьмите шарик от настольного тенниса. Положите его на середину листа. Расставьте ладони у края стекла и медленно приближайте их к шарику. Наблюдаемые явления объясните.

    Используя старую пластиковую мыльницу изготовьте «пылесос».

    п.25,26.

    «Детектив» Могут ли 2 одноименно заряженных тела притягиваться?

    Мини-сочинение «Электризация полезна или вредна?»

Летний полдень. Парит. Вдруг небо начинает быстро темнеть. Веет прохладой. Налетевший порыв ветра поднимает пыль и несёт её вдоль улицы. Проходит несколько минут, и первые крупные капли дождя падают на землю, оставляя на пыли большие тёмные пятна. Скоро дождь усиливается, - вот он уже полил сильными струями, создавая сплошную завесу из воды. Вдруг в свинцовом небе сверкнула извилистая огненная лента… Молния! Она ударила где-то близко, и через одну-две секунды раздался такой звук, как будто поблизости загрохотали орудийные выстрелы. Ещё несколько молний, сильных раскатов грома - и дождь утих, небо прояснилось. Гроза пронеслась мимо.

Мощные раскаты грома и ослепительные вспышки молнии внушали раньше людям страх. Наблюдая разрушения, иногда причинявшиеся молнией, человек, полный предрассудков и суеверий, считал, что молнию вызывают боги или могущественные силы, что молния «в наказание» убивает и калечит людей и сжигает их кров. В древнегреческих легендах говорится, что главный греческий бог - громовержец Зевс - в своём гневе мечет огненные стрелы - молнии. В русских поверьях считалось, что грозой управляет «Илья-пророк», разъезжающий в своей колеснице по небу.

Однако, несмотря на страх перед молнией, уже в глубокой древности люди внимательно наблюдали и изучали это грозное и прекрасное явление природы. Уже несколько десятков лет учёные исследуют его. Благодаря их самоотверженному и упорному труду, одно из интереснейших явлений природы - молния и сопровождающий её гром - в настоящее время получило полное научное объяснение. Выяснилось, что ничего таинственного в этом явлении нет и что «божественные силы» здесь не при чём. Учёные могут искусственно создавать молнию, правда в небольших размерах, в своих лабораториях. Совсем крошечные молнии может получить, как это рассказано дальше, каждый читатель этой книжки.

Люди стремились изучить молнию не просто из любопытства. Они хотели научиться бороться с нею, хотели её победить. Непобеждённая молния очень опасна. Она может смертельно поразить человека, разрушить здание, вызвать взрывы и пожары, причиняющие миллионные убытки, создать тяжёлые аварии электростанций, которые прекратят отпуск энергии. Всё это нарушает нормальную жизнь и работу людей.

Чтобы бороться с молнией, люди стремились изучить её. Без знаний победить молнию было невозможно. «Всё даётся знанием, победа - тоже», - говорил Максим Горький.

В этой небольшой книжке мы расскажем о том, как возникают молния и гром, какой вред может причинить молния и как защититься от её разрушительного действия. Начнём мы с основных сведений об электричестве, без которых всё дальнейшее не будет читателю понятно.

I. Некоторые сведения об электричестве

1. Молния и электрическая искра

Две с половиной тысячи лет тому назад греческий учёный Фалес из города Милета заметил, что если янтарь (жёлтую смолу, употреблявшуюся для украшения) натереть мехом, то он может притягивать лёгкие предметы - например, волокна или соломинки. По-гречески янтарь назывался электроном. От этого слова и получило своё название электричество.

Потом было обнаружено, что такие же свойства, как янтарь, приобретают и некоторые другие предметы, например, стекло, эбонит (вещество, из которого делают гребёнки, граммофонные пластинки и т. д.), если их натереть шерстью, шёлком или мехом. Тогда говорят, что эти предметы наэлектризованы.

Эбонитовую гребёнку можно наэлектризовать, расчёсывая ею волосы. Тот, кто видел, как в темноте расчёсывают чисто промытые и сухие волосы гребёнкой, замечал голубоватые искорки и слышал их треск.

Одна из первых машин, которую человек построил для получения электричества (это было в конце 17 века), состояла из стеклянного шара, вращающегося на железной оси. Когда натирали сукном вращающийся шар и затем дотрагивались до него рукою, то между шаром и рукой в темноте был виден свет и слышался треск. При быстром вращении шара наблюдались слабенькие искорки. Кажется сначала удивительным, что эти маленькие слабенькие искры и их лёгкий треск имеют такое же происхождение, что и громадная ослепительная молния и сопровождающий её гром. Но это именно так. Уже 200 лет тому назад учёные окончательно установили, что молния - это электрическая искра.

Впервые это доказал в 1752 году знаменитый американский учёный и общественный деятель Вениамин Франклин.

Летом 1752 года в американском городе Филадельфия можно было наблюдать странную картину. Забравшиеся под навес два взрослых человека (старшему на вид было лет 45, другой был совсем юноша) запускали шёлковый змей. Это были Франклин и его сын. К концу шнурка змея, прикреплённого шёлковой лентой к столбу, отец с сыном привязали массивный железный ключ от садовой калитки (рис. 1). Только сына посвятил отец в тайну своих опытов, опасаясь, в случае их неудачи, язвительных насмешек. Он тревожно стоял у змея, ожидая результатов опыта, как приговора своим многолетним исследованиям.

Рис. 1. Франклин с сыном запускают змея. (Со старинной картины.)

Вот надвинулась туча и прошла мимо. Никаких результатов, никаких следов электричества… И вдруг волокна шнурка натянулись, как это бывало при опытах с электричеством, проводившихся учёным в лаборатории. Франклин быстро поднёс палец к ключу и… сотрясение, которое он получил от проскочившей при этом сильной электрической искры, показалось ему приятнейшим из ощущений.

Ведь он добился того, чего так страстно и упорно желал! Его открытие возбудило весь учёный мир того времени. Бледная искра, издавшая негромкий треск, прозвучала громом на весь мир, доказав, что молния - это электрический разряд. Франклин как бы низвёл молнию на землю, отняв её у таинственных «неземных сил».+ », а отрицательное знаком «». Такие обозначения и будут употребляться на рисунках этой книжки.

Две с половиной тысячи лет тому назад греческий учёный Фалес из города Милета заметил, что если янтарь (жёлтую смолу, употреблявшуюся для украшения) натереть мехом, то он может притягивать лёгкие предметы - например, волокна или соломинки. По-гречески янтарь назывался электроном. От этого слова и получило своё название электричество.

Потом было обнаружено, что такие же свойства, как янтарь, приобретают и некоторые другие предметы, например, стекло, эбонит (вещество, из которого делают гребёнки, граммофонные пластинки и т. д.), если их натереть шерстью, шёлком или мехом. Тогда говорят, что эти предметы наэлектризованы.

Эбонитовую гребёнку можно наэлектризовать, расчёсывая ею волосы. Тот, кто видел, как в темноте расчёсывают чисто промытые и сухие волосы гребёнкой, замечал голубоватые искорки и слышал их треск.

Одна из первых машин, которую человек построил для получения электричества (это было в конце 17 века), состояла из стеклянного шара, вращающегося на железной оси. Когда натирали сукном вращающийся шар и затем дотрагивались до него рукою, то между шаром и рукой в темноте был виден свет и слышался треск. При быстром вращении шара наблюдались слабенькие искорки. Кажется сначала удивительным, что эти маленькие слабенькие искры и их лёгкий треск имеют такое же происхождение, что и громадная ослепительная молния и сопровождающий её гром. Но это именно так. Уже 200 лет тому назад учёные окончательно установили, что молния - это электрическая искра.

Впервые это доказал в 1752 году знаменитый американский учёный и общественный деятель Вениамин Франклин.

Летом 1752 года в американском городе Филадельфия можно было наблюдать странную картину. Забравшиеся под навес два взрослых человека (старшему на вид было лет 45, другой был совсем юноша) запускали шёлковый змей. Это были Франклин и его сын. К концу шнурка змея, прикреплённого шёлковой лентой к столбу, отец с сыном привязали массивный железный ключ от садовой калитки (рис. 1). Только сына посвятил отец в тайну своих опытов, опасаясь, в случае их неудачи, язвительных насмешек. Он тревожно стоял у змея, ожидая результатов опыта, как приговора своим многолетним исследованиям.

Рис. 1. Франклин с сыном запускают змея. (Со старинной картины.)


Вот надвинулась туча и прошла мимо. Никаких результатов, никаких следов электричества… И вдруг волокна шнурка натянулись, как это бывало при опытах с электричеством, проводившихся учёным в лаборатории. Франклин быстро поднёс палец к ключу и… сотрясение, которое он получил от проскочившей при этом сильной электрической искры, показалось ему приятнейшим из ощущений.

Ведь он добился того, чего так страстно и упорно желал! Его открытие возбудило весь учёный мир того времени. Бледная искра, издавшая негромкий треск, прозвучала громом на весь мир, доказав, что молния - это электрический разряд. Франклин как бы низвёл молнию на землю, отняв её у таинственных «неземных сил».

В том же 1752 году великий русский учёный Михаил Васильевич Ломоносов, откликаясь на открытие Франклина, так описывал сходство между искрой, получаемой от натёртого сукном стеклянного шара, и грозовыми разрядами - молниями:

«Вертясь Стеклянный шар даёт удары с блеском,
С громовым сходственным сверканием и треском.
Дивился сходству ум, но, видя малость сил,
До лета прошлого сомнителен в том был.
Внезапно чудный слух по всем странам течёт,
Что от громовых стрел опасности уж нет!
Что та же сила туч гремящих мрак наводит,
Котора от Стекла движением исходит,
Что зная правила, изысканны Стеклом,
Мы можем отвратить от храмин наших гром…»

2. Два рода электричества

Производя различные опыты над электричеством, люди выяснили основные его свойства. Прежде всего они открыли, что существует два рода электричества. Одно получается при натирании мехом стекла, драгоценных камней и некоторых других материалов - этот род электричества назвали стеклянным. Другой род электричества получается натиранием янтаря, смолы и ряда других веществ - это электричество назвали смоляным. Теперь для стеклянного и смоляного электричества приняты в науке другие названия. Электричество первого рода (стеклянное) называется положительным, а второго рода (смоляное) - отрицательным. В науке принято положительное электричество обозначать знаком «+ », а отрицательное знаком «». Такие обозначения и будут употребляться на рисунках этой книжки.

Электричество одного какого-нибудь рода отталкивает от себя электричество того же рода и притягивает электричество другого рода. Это - важное свойство электричества. Вот какими простыми опытами можно его проверить.

На вбитый в стену гвоздь наденем чистую сухую стеклянную трубочку, а к концу её подвесим на шёлковой нитке кусочек пробки (рис. 2, слева). Натрём стеклянную палочку мехом или плотной бумагой. Тогда на стекле появится положительное (стеклянное) электричество. Дотронемся затем этой палочкой до пробки. При этом часть электричества перейдёт с палочки на пробку. Теперь на пробке и на конце стеклянной палочки будет находиться электричество одного и того же рода (положительное), и пробка отскочит от палочки.




Рис. 2. Опыты с электричеством. Слева: зарядившись от натёртой палочки, пробка отталкивается от неё. Справа наверху: заряженные натёртой стеклянной палочкой две пробки оттолкнутся друг от друга. Справа внизу: если одну пробку зарядить от стеклянной, а другую - от смоляной палочки, то они притянутся друг к другу.


Подвесим теперь на стеклянную трубку две шелковинки с пробками. Если к обеим пробкам прикоснуться натёртой стеклянной палочкой, то они получат одинаковое, положительное электричество (или, как говорят, «зарядятся» положительным электричеством) и оттолкнутся друг от друга (рис. 2, справа наверху). То же самое произойдёт, если зарядить обе пробки отрицательным электричеством от натёртой смоляной палочки. Таким образом, два одинакового рода электричества отталкиваются друг от друга.

Если же одну пробку зарядить натёртой стеклянной палочкой, а другую - натёртой смоляной, то обе пробки окажутся заряженными электричествами различного рода и притянутся одна к другой (рис. 2, справа внизу).

Таким образом, два разного рода электричества притягиваются одно к другому.

3. Прибор для наблюдения действия электричества - электроскоп

Чтобы узнать, заряжен ли какой-нибудь предмет электричеством, пользуются простым прибором, который называется электроскопом. Электроскоп основан на том свойстве электричества, о котором только что говорилось - на свойстве двух предметов, заряженных электричеством одинакового рода, отталкиваться друг от друга.

Этот прибор изображён на рис. 3 (слева). Он состоит из стеклянной банки, закрытой пробкой, через которую проходит металлический стержень. На том конце стержня, который находится внутри банки, укреплены два тонких продолговатых металлических листочка, а на наружном конце находится металлический шарик. Если к шарику прикоснуться стеклянной палочкой, заряженной электричеством, то это стеклянное электричество перейдёт по стержню на листочки. Оба листочка окажутся заряженными электричеством одинакового рода (положительным), и поэтому они оттолкнутся друг от друга и примут наклонное положение. Это и показано на рис. 3 (справа).




Рис. 3. Листочки электроскопа (справа) раздвинулись - значит он заряжен электричеством.


Если ещё раз натереть стеклянную палочку и снова прикоснуться ею к шарику, то листочки электроскопа разойдутся ещё больше. Это происходит потому, что мы зарядили электроскоп дважды или, как говорят, подвели к нему двойное количество электричества. Чем больше электричества мы имеем, тем более заметно оно себя проявляет. В маленькой искре от гребёнки имеется очень немного электричества - и мы видим слабый свет и слышим тихий треск. При молнии же образуется очень большое количество электричества, и поэтому мы видим искры огромной длины и слышим оглушительный гром.

4. Электрический разряд

Произведём теперь такой опыт. Зарядим электроскоп электричеством одного рода, например - положительным (стеклянным). Листочки электроскопа разойдутся (рис. 4, слева).

Теперь поднесём к этому электроскопу натёртую смоляную палочку и, таким образом, подведём к нему некоторую новую порцию электричества, но уже другого рода - отрицательного (смоляного). Казалось бы, листочки должны разойтись ещё больше. Но оказывается, происходит обратное явление: листочки сойдутся и свободно повиснут так, как будто бы никакого электричества в электроскопе нет (рис. 4, справа). Два одинаковых количества электричества разного рода уничтожают друг друга; при их соединении ни того, ни другого электричества не остаётся.




Рис. 4. Два разного рода электричества уничтожают друг друга.


Это явление называют электрическим разрядом - говорят, что два тела, содержавшие положительное и отрицательное электричества, разрядились.

Положительное и отрицательное электричества всегда стремятся притянуться друг к другу и разрядить тело, на котором они находились. Если тела, заряженные электричествами разного рода, находятся близко друг от друга, но не соединены, то разряд может произойти и через воздух - тогда между обоими телами проскакивает искра и раздаётся короткий сухой треск. Чем сильнее тела были заряжены электричеством, тем ярче искра и сильнее треск.

В лабораториях учёные могут зарядить электричеством металлические шары так сильно, что образуется сверкающая искра до 10 метров длиной и раздаётся оглушительный удар.

Всякая электрическая искра происходит от соединения между собой положительного и отрицательного электричества, т. е. от электрического разряда.

5. Проводники и изоляторы

Все вещества, предметы, тела можно разделить на две группы - проводники электричества и электрические изоляторы.

Чем отличаются проводники от изоляторов?

Чтобы ответить на этот вопрос, сделаем следующий опыт с электроскопом. Возьмём два электроскопа и поставим их рядом на столе. Один из электроскопов зарядим электричеством, а другой оставим незаряженным (рис. 5, сверху). Прикоснёмся теперь к обоим шарикам сразу медной палочкой. Мы увидим, что угол между листочками заряженного электроскопа немного уменьшится, а листочки незаряженного электроскопа раздвинутся (рис. 5, слева). Это происходит потому, что часть электричества с одного электроскопа ушла по медной палочке к другому. Медь - проводник электричества.




Рис. 5. По проводнику электричество переходит от одного электроскопа к другому, а по изолятору перейти не может.


Сделаем теперь снова такой же опыт, но на этот раз соединим шарики обоих электроскопов палочкой, сделанной из фарфора (рис. 5, справа). Листочки электроскопа останутся в прежнем положении: с ними ничего не произойдёт. Через фарфор электричество не смогло перейти от одного электроскопа к другому. Фарфор не проводит электричества. Он является изолятором.

Проводниками электричества являются, в первую очередь, металлы (медь, железо и другие), вода и земля. Человеческое тело также относится к проводникам. Примерами электрических изоляторов являются фарфор, стекло, резина, воздух.

Проводники и носят своё название от того, что они проводят электричество, т. е. пропускают его через себя, а изоляторы не проводят - не пропускают через себя электричество.

Основную часть электрических устройств составляют проводники, переносящие электричество в определённое место, и изоляторы, которые не дают электричеству уходить в неположенные для него места. Всякий, кто видел телефонную линию или линию передачи электрической энергии (рис. 6), замечал, что провода, которые служат для передачи электричества, натянуты на фарфоровых или стеклянных изоляторах. Провода (линия передачи) несут электричество от электрической станции (где оно вырабатывается машинами) к фабрикам, заводам, МТС и жилищам. Большие фарфоровые изоляторы поддерживают провода и обеспечивают передачу по ним электричества. Изоляторы нужны именно для того, чтобы не допустить ухода электричества с проводов через столбы в землю, оградить, или, как говорят, «изолировать» его от земли.




Рис. 6. Линия передачи электричества.


Текущее в проводах электричество образует электрический ток. Чем больше электричества протекает в одну секунду через провод, тем больший ток течёт по нему.

6. Что представляет собою электричество?

Для ответа на вопрос - что же представляет собою электричество? - нужно знать, из чего состоят различные тела природы. Это изучается наукой, которая называется физикой.

Учёные-физики установили, что каждое тело, твёрдое, жидкое или газообразное, состоит из отдельных очень мелких частичек, называемых атомами. Атом же, в свою очередь, состоит из нескольких ещё более мелких частиц, заряженных электричеством. В середине атома расположена его основная часть - ядро атома. Это ядро заряжено положительным электричеством. Вокруг ядра вращаются частицы вещества, называемые электронами. Электрон заряжен отрицательным электричеством.

В обычном состоянии атом содержит одинаковое количество положительного и отрицательного электричества и поэтому он не проявляет своих электрических свойств.

Однако, если каким-либо образом разбить атом на части - отделить от него один или несколько электронов, то оставшаяся часть будет иметь больше положительного электричества, чем отрицательного. Тогда такой неполный атом проявит себя как положительно заряженное тело: он будет стремиться притянуть из окружающей среды недостающие ему электроны. Оторвавшиеся же от атома электроны будут проявлять свойства отрицательного электричества.

Этот отрыв и происходит, например, при натирании стекла мехом или плотной бумагой; его можно получать и другими способами. Электрический ток в проводе и представляет собой движение электронов. Количество электронов, т. е. количество электричества, проходящего через 1 квадратный сантиметр поперечного сечения проводника, называется силой тока.

Сила тока в электротехнике измеряется единицей, называемой ампером.

Через электрическую лампочку, горящую в комнате и имеющую среднюю яркость, протекает ток, измеряемый 1 / 3 – 1 / 2 ампера. В линиях передачи электрической энергии протекают токи, измеряемые сотнями и тысячами ампер, а в молнии ток доходит до 200 000 ампер!

7. Получение электричества через влияние

Теперь, когда мы знаем, что атомы каждого тела состоят из частиц, содержащих как положительное, так и отрицательное электричество, мы можем объяснить важное явление - получение электричества через влияние. Это поможет нам понять, как образуется молния.

Произведём следующий опыт. Поднесём к шарику электроскопа палочку, заряженную электричеством какого-нибудь рода, например - положительным, но не будем дотрагиваться палочкой до шарика, оставив между ними маленький просвет (рис. 7, слева). Листочки электроскопа разойдутся, хотя электричество с палочки на шарик не могло перейти: воздух не является проводником. Это произошло по следующей причине. Положительное электричество на палочке будет притягивать к себе отрицательное электричество, имеющееся на шарике, стержне и листочках электроскопа, и отталкивать от себя положительное электричество на этих же проводниках. Отрицательное электричество соберётся ближе к палочке - на поверхности шарика, а положительное - дальше, на листочках. А оба листочка, на которых оказалось электричество одного и того же рода (положительное), разойдутся.




Рис. 7. Получение электричества через влияние.


Но такое расположение обоих электричеств на электроскопе - непрочное. Стоит нам удалить палочку от шарика, и листочки снова спадут: оба рода электричества, притягиваясь друг к другу, опять равномерно распределятся во всех частях электроскопа, и он перестанет проявлять свои электрические свойства.

Потупим теперь так. Снова поднесём к шарику электроскопа палочку, заряженную положительным электричеством, оставив просвет. Листочки разойдутся. Затем, не унося палочки, дотронемся другой рукой до шарика. Угол между листочками немного уменьшится, но совсем листочки не спадут (рис. 7, посредине). Теперь унесём палочку и отнимем руку. Листочки останутся в прежнем положении - электроскоп будет заряжен (рис. 7, справа).

Почему это произошло? Откуда получилось электричество на электроскопе? Ведь мы заряженной палочкой к шарику не прикасались.

Когда мы дотронулись рукою до шарика электроскопа, то положительное электричество на нём, которое стремилось оттолкнуться от палочки, пошло по проводникам - нашей руке и нашему телу - и ушло в землю. А отрицательное электричество, притягиваемое палочкой, осталось на электроскопе и распределилось по всей его проводящей части, на шарике, стержне и листочках. На долю листочков досталось уже меньше электричества, и угол между ними уменьшился. Когда мы после этого унесли палочку, то ничего не изменилось, и электроскоп остался заряженным отрицательным электричеством.

Такой способ получения электричества называется получением электричества «через влияние». Здесь электричество не переходит от одного тела к другому, а получается от влияния тела, заряженного электричеством другого рода.

Мы увидим в следующей главе, что именно такое получение электричества через влияние и будет причиной молнии.

Рассказанных здесь сведений достаточно, чтобы понять, как образуется молния, какие действия она производит и как от неё защититься. Этому и посвящены следующие главы нашей книжки.

Цель работы : знакомство с историей развития электротехники, с творческим путем наиболее выдающихся ученых, внесших вклад в изучение электрических и магнитных явлений, выявление их закономерностей, создание электротехнических устройств.

Завершение работы

7. Открытие явления

3. Развитие электростатики электростатической индукции. Изучение процессов электризации

8. Исследование взаимодействия

4. Изобретение лейденской банки заряженных тел. Открытие закона Кулона

Первые наблюдения магнитных и электрических явлений относятся к глубокой древности. О таинственных способностях магнита притягивать железные предметы упоминается в старинных летописях и легендах, дошедших до нас из Азии (Индии и Китая), Древней Греции и Рима.

Очень образное объяснение свойств магнита дано в знаменитой поэме «О природе вещей» римского поэта Лукреция (99-55 гг. до н.э.), написанной более 2 тыс. лет назад.

Из древних сказаний и летописей, относящихся ко второму тысячелетию до н.э., мы узнаем о многих интересных фактах практического использования магнита. Древние индийцы использовали магнит для извлечения железных наконечников стрел из тел раненых воинов. В китайских летописях рассказывается о волшебных магнитных воротах, сквозь которые не мог пройти человек, спрятавший металлическое оружие. При раскопках городища ольмеков (Центральная Америка) найдены скульптуры трехтысячелетней давности, высеченные из магнитных глыб.

В Китае во втором тысячелетии до н.э. уже применялись первые компасы разных конструкций. В одном из музеев хранится китайский компас тысячелетней давности, напоминающий ложку.

Естественно, что древние ученые и

естествоиспытатели задумывались над причиной Китайский компас загадочных свойств магнита. Платон, например,

объяснял их божественным происхождением.

Первые наблюдения магнитных и электрических явлений

С именем одного из древних мудрецов - Фалеса (640-550 гг. до н.э.) связаны дошедшие до нас предания

о свойстве натертого янтаря притягивать легкие тела. По его мнению, в янтаре как и в магните, имеется душа, являющаяся первопричиной притяжения.

Изделия из янтаря, блестящие и красивые, широко использовались древними людьми для украшения, поэтому вполне вероятно, что многие могли заметить, что натертый янтарь притягивает легкие соломинки, кусочки тканей и пр.

Греки называли янтарь «электрон». От этого спустя много веков и произошло слово «электричество». Известно, что в одном из древнегреческих сочинений описывался камень (по-видимому, драгоценный), который, подобно янтарю, электризовался при трении. Но об электризации других тел древние греки, вероятно, не знали.

И еще одно любопытное явление не осталось незамеченным древними народами, жившими на побережье Средиземного моря и в бассейне р. Нил. Речь идет об «электрических» рыбах - скате и соме. Греки их называли «наркэ», что означает «парализующий». При соприкосновении с этими рыбами, имеющими электрические органы, человек испытывал сильные удары. Известно, что в I веке н.э. римские врачи использовали электрический скат для лечения подагры, головной боли и других болезней.

И, конечно, древние народы наблюдали грозные раскаты грома и яркие вспышки молний, внушавшие им естественный страх, но ни одному из мудрецов тех времен не могла прийти в голову мысль о том, что и притяжения натертого янтаря, и удары электрических рыб, и явления грозы в атмосфере имеют одну и ту же природу.

Упадок античной культуры заметно отразился и на изучении электрических и магнитных явлений. Из многочисленных источников следует, что практически до 1600 г. не было сделано не одного открытия в области электрических явлений, а в области магнетизма лишь описаны способы использования мореплавателями компаса (арабами в IX, а европейцами в XI в.).

В XIII в. ученым удалось установить ряд свойств магнита: существование разноименных полюсов и их взаимодействие; распространение магнитного действия через различные тела (бумагу, дерево и др.); были описаны способы изготовления магнитных стрелок, а французский ученый Пьер Перегрин (1541-1616 гг.) впервые снабдил компас градуированной шкалой.

В XIII-XIV вв. капитаны-католики пользовались компасом тайно, опасаясь попасть на костер инквизиции, которая видела в компасе дьявольский инструмент, созданный колдунами.

В течение многих веков магнитные явления объясняли действием особой магнитной жидкости, и как это будет показано далее, лишь выдающийся французский физик A.M. Ампер в 20-х годах XIX в. впервые объяснил электрическую природу магнетизма.

Экспериментальные исследования У. Гильберта

Значительный перелом в представлениях об электрических и магнитных явлениях наступил в самом начале XVII в., когда вышел в свет фундаментальный научный труд видного английского ученого (врача английской королевы Елизаветы) Уильяма Гильберта (1554--1603 гг.) «О магните, магнитных телах и о большом магните - Земле» (1600 г.). Будучи последователем экспериментального метода в естествознании, У. Гильберт провел более 600 искусных опытов, открывших, как он писал, тайны «скрытых причин различных явлений».

В отличие от многих своих предшественников У. Гильберт считал, что магнитная стрелка движется под влиянием магнетизма Земли, которая является большим магнитом. Свои выводы он основывал на оригинальном эксперименте, впервые им осуществленном. Он изготовил из магнитного железняка небольшой шар - «маленькую Землю - тереллу» и доказал, что магнитная стрелка принимает но отношению к поверхности этой «тереллы» такие же положения, какие она принимает в поле земного магнетизма. Он установил возможность намагничивания железа посредством земного магнетизма.

Исследуя магнетизм, У. Гильберт занялся также и изучением электрических явлений. Он доказал, что электрическими свойствами обладает не только янтарь, но и многие другие тела: алмаз, сера, смола, горный хрусталь

Электризующиеся при их натирании. Эти тела он назвал «электрическими» в соответствии с греческим названием янтаря (электрон). Но У. Гильберт безуспешно пытался наэлектризовать металлы, не изолируя их, и поэтому пришел к ошибочному выводу о невозможности электризации металлов трением. Это заключение У. Гильберта было убедительно опровергнуто спустя два столетия выдающимся русским электротехником академиком Василием Владимировичем Петровым .

У. Гильберт правильно установил, что «степень электрической силы» бывает различна, и влага снижает электризацию тел при натирании. Сравнивая магнитные и электрические явления, У. Гильберт утверждал, что они имеют разную природу: например, «электрическая сила» происходит только от трения, тогда как магнитная постоянно воздействует на железо; магнит поднимает тела значительной тяжести, электричество - только легкие тела. Этот ошибочный вывод У. Гильберта продержался в науке более 200 лет.

Представления о том, что электрические явления обусловлены присутствием особой "электрической жидкости», аналогичной «теплотвору» и «светотвору». были характерны для науки того периода, когда механические взгляды на многие явления природы были господствующими.

Фундаментальный труд В, Гильберта выдержал в течение XVII в. нескольких изданий, он был настольной книгой многих естествоиспытателей в разных странах Европы и сыграл огромную роль в развитии учения об электричестве и магнетизме. Великий Г. Галилей писал о сочинениях У. Гильберта: «Я воздаю величайшую похвалу и завидую этому автору».

Электростатическая машина О. Герике

Одним из первых, кто, познакомившись с книгой В. Гильберта, решил получить более сильные проявления электрических сил, был магдебургский бургомистр Отто фон Герике (1602-1686 гг.).

В 1650 г. он изготовил шар из серы размером с детскую голову, насадил его на железную ось, укрепленную на деревянном штативе. При помощи ручки шар мог вращаться и натирался ладонями рук или куском сукна, прижимаемого к шару рукой. Это была первая простейшая электростатическая машина.

О. Герике удалось заметить слабое свечение электризуемого шара в темноте и, что особенно важно, впервые обнаружить, что пушинки, притягиваемые шаром, через некоторое время отталкиваются от него. Это явление ни О. Герике. ни многие его современники долго не могли объяснить.

Немецкий ученый Г.В.Лейбниц (1646-1716 гг.), пользуясь машиной О. Герике, наблюдал электрическую искру - это первое упоминание об этом загадочном явлении.

Совершенствование электростатических машин

В течение первой половины XVII в. электростатическая машина претерпела ряд усовершенствований: серный шар был заменен стеклянным (так как стекло более интенсивно электризовалось), а позднее вместо шаров или цилиндров (которые труднее было изготовить, и при нагревании они нередко взрывались) стали применять стеклянные диски. Для натирания использовались кожаные подушечки, прижимаемые к стеклу пружинками; позднее для усиления электризации подушечки стали покрывать амальгамой.

Важным новым элементом конструкции машины стал кондуктор (1744 г.) - металлическая трубка, подвешенная на шелковых нитях, а позднее устанавливаемая на изолированных опорах. Кондуктор служил резервуаром для сбора электрических зарядов, образованных при трении. После изобретения лейденской банки ее также устанавливали рядом с машиной.

Электростатическая машина. Конец XVIII в. Неизвестный мастер.

Инструментальная палата Санкт-Петербургской академии наук

Выявлены два рода электричества и установлены законы их взаимодействия. Обнаружены проводниковые и изоляционные свойства материалов.

Опыты по передаче электрического заряда. Открытие электропроводности

Значительным шагом в изучении свойств электрических зарядов были исследования члена английского Королевского общества Стефана Грея (1670-1736 гг.) и члена Парижской академии наук Шарля Франсуа Дюфе (1698 -1736 гг.).

В результате многочисленных экспериментов С. Грею удалось установить, что электрическая способность стеклянной трубки притягивать легкие тела может быть передана другим телам, и он показал (1729 г.), что тела в зависимости от их отношения к электричеству можно разделить на две группы: проводники (например, металлическая нить, проволока) и непроводники (например, шелковая нить).

Продолжая опыты С. Грея, Ш.Ф. Дюфе (в 1733 г.) обнаружил два рода электрических зарядов - «стеклянные» и «смоляные» и их особенность отталкивать одноименные и притягивать противоположные заряды.

Дюфе также создал прототип электроскопа в виде двух подвешенных и расходящихся при электризации

К концу 30х годов XVIII в. были успешно применены в качестве проводников: льняная нить (Герике, 1663), пеньковая бечевка, непросушенное дерево, металлическая проволока (Грэй, 1729), влажный кетгут (Дезагюлье,

1738); в качестве непроводников: шелк (Уилер в опыте, поставленном Грэем, 1729), конский волос (Грэй, 1729), стекло и сургуч (Дюфе, 1733). Длина электрических линий достигала нескольких сотен метров.

О. Герике, проводя опыты с электростатической машиной, обнаружил, что потираемый руками серный шар передает свою способность притягивать легкие тела льняной нитке длиной в локоть, конец которой, зацепленный за палку, находится у самого шара; притяжение наблюдалось в пределах более дюйма от нижнего конца нити.

Пользуясь стеклянной трубкой (или палочкой), Стивен Грэй повторил опыт Герике. В 1729 г. Грэй обнаружил ряд тел, которым трубка может сообщать «электрическую силу». Это - деревянные стержни и проволока (железная и латунная), которые Грэй вставлял в трубку (через пробку), пеньковая бечевка, которую он привязывал к трубке или заталкивал в нее. Максимальная длина комнатной электропередачи по бечевке или проволоке, свисавших с трубки, не превышала 1 м, а максимальная длина горизонтальной комнатной «электропередачи» по состыкованным деревянным проводникам составляла не более 5,5 м, включая длину трубки. Сообщение телам «электрической силы» Грэй проверял с помощью пушинки, которая могла притягиваться к телу, отталкиваться от него, парить

в воздухе.

Грэй решил попытаться передать электричество по горизонтали чтобы выяснить занимавший его вопрос, как далеко можно передавать электричество. Для этого он подвесил бечевку на гвоздях, вбитых в деревянную балку на одинаковой высоте. Опыт не получился. Грэй сделал правильный вывод, что электричество ушло в балку.

Преодолеть затруднение удалось благодаря блестящей идее Уилера, вместе с которым Грэй экспериментировал летом 1729 г. Священник Грэнвилль Уилер (ум. 1770) предложил поддержать линию передачи (line of communication, по Грэю) шелковым шнуром, а не подвешивать ее на гвоздях, вбитых в балку. Первый же опыт превзошел все ожидания. Электричество было передано по линии длиной около 25 м. Заменив шелковый шнур металлической проволокой, Грэй опять получил отрицательный результат.

Грэй «...показал, что электричество можно передавать, не касаясь линии передачи трубкой, а только держа трубку близ линии», т. е., по позднейшей терминологии, с помощью электростатической индукции.













Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока:

Образовательные

  • познакомить учащихся с новым физическим явлением электризации тел и его особенностями;
  • доказать существование двух типов зарядов и объяснить их взаимодействие;
  • раскрыть значение электризации для жизнедеятельности человека.

Развивающие

  • продолжить формирование умений выдвигать гипотезу и проверять (или опровергать) ее экспериментально;
  • развивать умения анализировать, делать выводы, обобщать;
  • совершенствовать навык самообразовательной деятельности.

Воспитательные

  • развивать коммуникативные способности, умение работать в группе;
  • личные качества учащихся: организованность, внимание, аккуратность.

Здоровьесберегающие

  • создание комфортного психологического климата на уроке;
  • атмосферы сотрудничества: ученик-учитель, учитель-ученик, ученик-ученик.

Тип урока: урокизучения нового материала.

Форма организации учебной деятельности учащихся: коллективная, работа в группе, индивидуальная за партой и у доски.

Оборудование: компьютер, экран, оборудование для физического эксперимента, дидактические материалы.

План урока:

  1. Организационный этап.
  2. Актуализация знаний, выведение темы и цели урока через поиск ответа на проблемный вопрос и анализ материалов слайдов.
  3. Изучение нового материала с использованием фронтального и демонстрационного экспериментов; через выдвижение гипотезы и ее экспериментальное доказательство, работу с дополнительным (историческим) материалом и выступлением учащегося на тему: «Вред и польза электризации».
  4. Физминутка.
  5. Закрепление материала. Фронтальный эксперимент. Работа в группах. Исследовательская деятельность. Выполнение теста.
  6. Итог урока. Домашнее задание. Рефлексия.

Ход урока

I. Организационный этап.

(Самооценка готовности к уроку.)

II. Актуализация знаний, выведение цели урока.

Ребята, мы закончили с вами изучение большой главы «Тепловые явления».

Сегодня мы начинаем изучать новую большую главу.

Ну-ка отгадайте, о чем мы будем говорить в этой главе?

Оно несёт нам свет, тепло
Компьютер, видео включает
Комфортно с ним, но без него
Удобства мигом исчезают.

Ответ: электричество.

Слова «электричество» и «электрический ток» знакомы сейчас каждому человеку. И тема, к изучению которой мы приступаем очень важная. А как вы думаете, почему? (Электрический ток используется в наших домах, на транспорте, на заводах, фабриках, в сельском хозяйстве и т.д. И в природе есть электричество: молнии, полярные сияния, электрические рыбы и многие другие явления).

Слайды 1-4.

Чтобы понять, что собой представляет электрический ток, электричество, надо ознакомиться сначала с большим кругом явлений, называемых электрическими . Глава III так и называется «Электрические явления».

Сегодня на уроке мы изучим два вопроса из этой главы: «Электризация тел. Два рода зарядов».

Запишите тему урока в тетрадь.

Давайте определим цель нашего урока, какие вопросы мы рассмотрим на уроке? (Что такое электризация? Какими свойствами она обладает? Какие заряды существуют в природе? Пользу или вред приносит явление электризации?)

Слайд 5.

III. Изучение нового материала.

Наш урок проходит в преддверии Нового года. А в Новый год совершается много чудес.

Сегодня на уроке у меня тоже есть помощник для совершения чудес – это палочка,обыкновенная, из эбонита (обращаю внимание детей на запись на доске: эбонит-это каучук с примесью серы). Я попытаюсь с ее помощью совершить чудо. Попробую что-нибудь достать из этой красивой коробочки.

Не получается. Что же делать? (сказать заклинание)

Попробую. Крибли-Крабли-Бумс! Опять не получается…

А вспомните, что делал Алладин, когда доставал из лампы джина? (натирал лампу)

Попробую и я натереть свою палочку о шерстяную тряпочку.

Получилось. А палочка-то, оказывается, волшебная. После натирания она стала притягивать мелкие листочки бумаги, шерстинки, пушинки и даже тонкую струйку воды.

а) Фронтальный эксперимент. У вас на столах, ребята, есть пластмассовая линейка и лист бумаги. Проверьте, может линейка тоже волшебная? (натирают линейку о лист бумаги)

Да, к линейке после натирания прилипают легкие предметы.

Итак, какое интересное свойство тел мы увидели в проведенных опытах?

(тело после натирания притягивает другие тела)

Это «чудо», которое мы с вами наблюдали, имеет название – «электризация».

А про тело, которое после натирания притягивает к себе другие тела, физики говорят, что оно наэлектризовано или, что ему сообщен электрический заряд.

Эти свойства тел были замечены еще в глубокой древности, в VI век до н. э.

Послушаем легенду. Слайд 6

Дочь греческого философа Фалеса Милетского пряла шерсть янтарным веретеном. Как-то, уронив веретено в воду, девушка стала обтирать его краем своего шерстяного хитона и заметила, что к веретену пристало несколько шерстинок. Думая, что они прилипли к веретену, потому что оно все еще влажно, она принялась вытирать его еще сильнее. И что же? Шерстинок налипало тем больше, чем сильнее натиралось веретено. Девушка обратилась за разъяснением этого явления к отцу. Фалес понял, что причина в веществе, из которого сделано веретено, он накупил различных янтарных изделий и убедился, что все они, будучи натерты шерстяной материей, притягивают легкие предметы, подобно тому, как магнит притягивает железо.

«Янтарь» по-гречески – электрон, отсюда и произошли слова «электричество», «электрические явления», «электризация» (обращаю внимание детей на запись на доске: янтарь-это окаменевшая смола хвойных деревьев, живших миллионы лет назад; показываю бусы из янтаря).

Попробуем сформулировать, что же такое электризация?

Электризация – это процесс сообщения телу электрического заряда. Слайд 7

Сколько же тел участвуют в процессе электризации? (в электризации участвуют два тела)

У меня в руках другая волшебная палочка – стеклянная. Я подношу ее к кусочкам бумаги, ничего не наблюдаем. Натираю ее уже о шелк, снова подношу к кусочкам бумаги, шерстинкам и мы видим, что они притягиваются к палочке. Что мы можем сказать о палочке? (она наэлектризована или ей сообщен эл. заряд).

Про одно из тел мы можем сказать, что оно наэлектризовано, можно ли и про другое сказать, что оно наэлектризовано? Выдвигается гипотеза. Как проверить гипотезу? (Демонстрационный эксперимент)

Вывод: электризуются оба тела.

Запишите все выводы в тетрадь.

б) Два рода зарядов Слайд 8.

В 1733 году французский ботаник и физик Шарль Дюффе открыл два вида зарядов – заряды, полученные в результате трения двух смолистых веществ (он их назвал «смолистым электричеством») и заряды, полученные при трении стекла и слюды («стеклянное электричество»). А американский физик и политический деятель Бенжамин Франклин в 1778 году заменил термин «стеклянное электричество» на «положительное», «смоляное» на «отрицательное». Эти термины и прижились в науке.

Положительный заряд обозначают знаком «+», отрицательный знаком «-».

Слайд 9.

Стекло, потертое о шелк, заряжается положительным зарядом – «+»

Эбонит, потертый о шерсть, заряжается отрицательным зарядом – «-»

На доске и в тетрадях рисуем схему:

Исследуем, как ведут себя тела, заряженные разными зарядами; одинаковыми зарядами.

Опыты с султанами.

1. Тела, имеющие заряды одного рода, взаимно отталкиваются.

2. Тела, имеющие заряды разного рода, взаимно притягиваются.

Запишите выводы в тетрадь.

IV. Физминутка .

Подвигаемся немного (образуем пары).

Вы заряды положительные. Изобразите их взаимодействие.

Одни из вас заряд положительный, другой отрицательный. Изобразите их взаимодействие.

Вы заряды отрицательные. Изобразите их взаимодействие. Слайд 10.

Выступление ученика на тему: «Электризация полезна и вредна» Приложение 1 Слайды 11-12.

V. Закрепление

а) Фронтальный эксперимент.

1. У вас на столе лежат две полоски из полиэтилена и две полоски из бумаги. Положите на полоску из полиэтилена полоску из полиэтилена. Погладьте их тыльной стороной ладони. Попробуйте их развести, а затем медленно сближайте. Что вы наблюдаете? (отталкивание) Как зарядились полоски?

А теперь положите на полоску из бумаги полоску из полиэтилена. Погладьте их тыльной стороной ладони. Попробуйте их развести, а затем медленно сближайте. Что вы наблюдаете? (притяжение). Как зарядились полоски?

б) Исследовательская работа.

Выполняя работу, составьте план проведения эксперимента по определению знака заряда, проговорите друг другу порядок своих действий.

1-я группа. Определите знак заряда, получаемый на пластмассовой линейке, потертой о сухой лист бумаги. Необходимые приборы определите сами.

2-я группа. Имея в своем распоряжении пластмассовую расческу, эбонитовую палочку, султан, суконку определите знак заряда, получаемого на расческе при расчесывании волос.

3-я группа. Подвешенная к штативу на шелковой нити бабочка заряжена, но неизвестно каков знак ее заряда. Как, имея в своем распоряжении стеклянную палочку и кусок шелка, определить знак заряда на бабочке?

в) тест (выполняется на двойном листе, между листами вставлена копировальная бумага; верхний лист сдается, нижний остается у ученика для проверки и самооценки выполненной работы)

  1. Как взаимодействуют заряженная палочка и бумажная гильза в случае а и в случае б?

  1. Какой знак заряда имеет левый шар в случае а и в случае б?

  1. Правильно ли изображены взаимодействия заряженных тел?

  1. Висящие рядом бумажные гильзы наэлектризовали. После этого они расположились так, как показано на рисунке. Одинаковые или разные заряды получили гильзы?

Слайд 13

VI. Итог урока. Домашнее задание. Рефлексия.

(электризуем воздушные шарики-смайлики и прикрепляем их на стену над доской; дети выходят к доске и ставят плюс под выбранным смайликом.)

§25, 26. Выучить записи в тетради.

Задание на выбор:

  1. Запишите примеры электризации, с которыми вы встретитесь дома.
  2. Проведите эксперимент по электризации с имеющимися дома предметами.
  3. Проведите исследовательскую работу по теме «Электризация тел» по плану:
    1. Цель исследования.
    2. Оборудование.
    3. Ход исследования.
    4. Выводы.

Результаты работы можно представить в виде презентации, описания или фотографий и т.п.

Интернет-ресурсы:

  1. shi51.ucoz.ru/index/elektrizaciya_tel_8/0-58
  2. wiki.edc.samara.ru/index.php/

Публикации по теме