Агрегатное состояние вещества вывод. Агрегатное состояние вещества. Изменение агрегатных состояний вещества. Представления о микромире: от Древней Греции до XVII века

Всем, я думаю, известно 3 основных агрегатных состояния вещества: жидкое, твердое и газообразное. Мы сталкиваемся с этими состояниями вещества каждый день и повсюду. Чаще всего их рассматривают на примере воды. Жидкое состояние воды наиболее привычно для нас. Мы постоянно пьем жидкую воду, она течет у нас из крана, да и сами мы на 70% состоим из жидкой воды. Второе агрегатное состояние воды — это обычный лед, который зимой мы видим на улице. В газообразном виде воду тоже легко встретить в повседневной жизни. В газообразном состоянии вода — это, всем нам известный, пар. Его можно увидеть, когда мы, к примеру, кипятим чайник. Да, именно при 100 градусах вода переходит из жидкого состояния в газообразное.

Это три привычных для нас агрегатных состояния вещества. Но знаете ли вы, что их на самом деле 4? Я думаю, хоть раз каждый слышал слово «плазма ». А сегодня я хочу, чтобы вы еще и узнали побольше о плазме — четвертом агрегатном состоянии вещества.

Плазма — это частично или полностью ионизированный газ с одинаковой плотностью, как положительных, так и отрицательных зарядов. Плазму можно получить из газа — из 3 агрегатного состояния вещества путем сильного нагревания. Агрегатное состояние вообще, по сути, полностью зависит от температуры. Первое агрегатное состояние — это самая низкая температура, при которой тело сохраняет твердость, второе агрегатное состояние — это температура при которой тело начинает плавиться и становиться жидким, третье агрегатное состояние — это наиболее высокая температура, при ней вещество становиться газом. У каждого тела, вещества температура перехода от одного агрегатного состояние к другому совершенно разная, у кого-то ниже, у кого-то выше, но у всех строго в такой последовательности. А при какой же температуре вещество становиться плазмой? Раз это четвертое состояние, значит, температура перехода к нему выше, чем у каждого предыдущего. И это действительно так. Для того, чтобы ионизировать газ необходима очень высокая температура. Самая низкотемпературная и низкоионизированная (порядка 1%) плазма характеризуется температурой до 100 тысяч градусов. В земных условиях такую плазму можно наблюдать в виде молний. Температура канала молнии может превышать 30 тысяч градусов, что в 6 раз больше, чем температура поверхности Солнца. Кстати, Солнце и все остальные звезды — это тоже плазма, чаще все-таки высокотемпературная. Наука доказывает, что около 99% всего вещества Вселенной — это плазма.

В отличие от низкотемпературной, высокотемпературная плазма обладает практически 100% ионизацией и температурой до 100 миллионов градусов. Это поистине звездная температура. На Земле такая плазма встречается только в одном случае - для опы-тов тер-мо-ядер-ного син-теза. Кон-тро-ли-ру-е-мая реак-ция доста-точно сложна и энер-го-за-тратна, а вот некон-тро-ли-ру-е-мая доста-точно заре-ко-мен-до-вала себя как ору-жие колос-саль-ной мощ-но-сти - тер-мо-ядер-ная бомба, испы-тан-ная СССР 12 авгу-ста 1953 года.

Плазму классифицируют не только по температуре и степени ионизации, но и по плотности, и по квазинейтральности. Словосочетание плотность плазмы обычно обозначает плотность электронов , то есть число свободных электронов в единице объёма. Ну, с этим, думаю, все понятно. А вот что такое квазинейтральность знают далеко не все. Квазинейтральность плазмы — это одно из важнейших ее свойств, заключающееся в практически точном равенстве плотностей входящих в её состав положительных ионов и электронов. В силу хорошей электрической проводимости плазмы разделение положительных и отрицательных зарядов невозможно на расстояниях больших дебаевской длины и временах больших периода плазменных колебаний. Почти вся плазма квазинейтральна. Примером неквазинейтральной плазмы является пучок электронов. Однако плотность не-нейтральных плазм должна быть очень мала, иначе они быстро распадутся за счёт кулоновского отталкивания.

Мы совсем мало рассмотрели земных примеров плазмы. А ведь их достаточно много. Чело-век научился при-ме-нять плазму себе во благо. Бла-го-даря чет-вер-тому агре-гат-ному состо-я-нию веще-ства мы можем поль-зо-ваться газо-раз-ряд-ными лам-пами, плаз-мен-ными теле-ви-зо-рами, дуго-вой элек-тро-свар-кой, лазе-рами. Обыч-ные газо-раз-ряд-ные лампы днев-ного света — это тоже плазма. Существует в нашем мире также плазменная лампа . Ее в основном используют в науке, чтобы изучить, а главное — увидеть некоторые из наиболее сложных плазменных явлений, включая филаментацию. Фотографию такой лампы можно увидеть на картинке ниже:

Кроме бытовых плазменных приборов, на Земле так же часто можно видеть природную плазму. Об одном из ее примеров мы уже говорили. Это молния. Но помимо молний плазменными явлениями можно назвать север-ное сия-ние, “огни свя-того Эльма”, ионосферу Земли и, конечно, огонь.

Заметьте, и огонь, и молния, и другие проявления плазмы, как мы это называем, горят. Чем обусловлено столь яркое испускание света плазмой? Свечение плазмы обусловлено переходом электронов из высокоэнергетического состояния в состояние с низкой энергией послерекомбинации с ионами. Этот процесс приводит к излучению со спектром, соответствующим возбуждаемому газу. Именно поэтому плазма светиться.

Хотелось бы так же немного рассказать об истории плазмы. Ведь когда-то плазмой назывались лишь такие вещества, как жидка составляющая молока и бесцветная составляющая крови. Все изменилось в 1879 году. Именно в тот год знаменитый английский ученый Уильям Крукс, исследуя электрическую проводимость в газах, открыл явление плазмы. Правда, назвали это состояние вещества плазмой лишь в 1928. И это совершил Ирвинг Ленгмюр.

В заключении хочу сказать, что такое интересное и загадочное явление, как шаровая молния, о которой я не раз писала на этом сайте, это, конечно же, тоже плазмойд, как и обычная молния. Это, пожалуй, самый необычный плазмойд из всех земных плазменных явлений. Ведь существует около 400 самых различных теорий на счет шаровой молнии, но не одна из них не была признана воистину правильной. В лабораторных условиях похожие, но кратковременные явления удалось получить несколькими разными способами, так что вопрос о природе шаровой молнии остаётся открытым.

Обычную плазму, конечно, тоже создавали в лабораториях. Когда-то это было сложным, но сейчас подобный эксперимент не составляет особого труда. Раз уж плазма прочно вошла в наш бытовой арсенал, то и в лабораториях над ней немало экспериментируют.

Интереснейшим открытием в области плазмы стали эксперименты с плазмой в невесомости. Оказывается, в вакууме плазма кристаллизуется. Это происходит так: заряженные частицы плазмы начинают отталкиваться друг от друга, и, когда у них есть ограниченный объем, они занимают то пространство, которое им отведено, разбегаясь в разные стороны. Это весьма похоже на кристаллическую решетку. Не означает ли это, что плазма являеться замыкающим звеном между первым агрегатным состоянием вещества и третьим? Ведь она становиться плазмой благодаря ионизации газа, а в вакууме плазма вновь становиться как бы твердой. Но это только мое предположение.

Кристаллики плазмы в космосе имеют также и достаточно странную структуру. Эту структуру можно наблюдать и изучать только в космосе, в настоящем космическом вакууме. Даже если создать вакуум на Земле и поместить туда плазму, то гравитация будет просто сдавливать всю «картину», образующуюся внутри. В космосе же кристаллы плазмы просто взлетают, образуя объемную трехмерную структуру странной формы. После отправления результатов наблюдения за плазмой на орбите земным ученым, выяснилось, что завихрения в плазме странным образом повторяют структуру нашей галактики. А это значит, что в будущем можно будет понять, как зародилась наша галактика путем изучения плазмы. Ниже на фотографиях показаны та самая кристаллизованная плазма.

Это все, что мне бы хотелось сказать на тему плазмы. Надеюсь, она вас заинтересовала и удивила. Ведь это воистину удивительное явление, а точнее состояние — 4 агрегатное состояние вещества.

Агрегатные состояния вещества (от латинского aggrego - присоединяю, связываю) - это состояния одного и того же вещества, переходам между которыми соответствуют скачкообразные изменения свободной энергии, энтропии, плотности и других физических параметров вещества.

Газ (французское gaz, происшедшее от греческого chaos - хаос) - это агрегатное состояние вещества, в котором силы взаимодействия его частиц, заполняющих весь предоставленный им объем, пренебрежимо малы. В газах межмолекулярные расстояния велики и молекулы движутся практически свободно.

  • Газы можно рассматривать как значительно перегретые или малонасыщенные пары.
  • Над поверхностью каждой жидкости вследствие испарения находится пар. При повышении давления пара до определенного предела, называемого давлением насыщенного пара, испарение жидкости прекращается, так как давление пара и жидкости становится одинаковым.
  • Уменьшение объема насыщенного пара вызывает конденсацию части пара, а не повышение давления. Поэтому давление пара не может быть выше давления насыщенного пара. Состояние насыщения характеризуется массой насыщения, содержащейся в 1м массой насыщенного пара, которая зависит от температуры. Насыщенный пар может стать ненасыщенным, если увеличивать его объем или повышать температуру. Если температура пара много выше точки кипения, соответствующей данному давлению, пар называется перегретым.

Плазмой называется частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Солнце, звезды, облака межзвездного вещества состоят из газов - нейтральных или ионизованных (плазмы). В отличие от других агрегатных состояний плазма представляет собой газ заряженных частиц (ионов, электронов), которые электрически взаимодействуют друг с другом на больших расстояниях, но не обладают ни ближним, ни дальним порядками в расположении частиц.

Жидкость - это агрегатное состояние вещества, промежуточное между твердым и газообразным.

  1. Жидкостям присущи некоторые черты твердого вещества (сохраняет свой объем, образует поверхность, обладает определенной прочностью на разрыв) и газа (принимает форму сосуда, в котором находится).
  2. Тепловое движение молекул (атомов) жидкости представляет собой сочетание малых колебаний около положений равновесия и частых перескоков из одного положения равновесия в другое.
  3. Одновременно происходят медленные перемещения молекул и их колебания внутри малых объемов, частые перескоки молекул нарушают дальний порядок в расположении частиц и обусловливают текучесть жидкостей, а малые колебания около положений равновесия обусловливают существование в жидкостях ближнего порядка.

Жидкости и твердые вещества, в отличие от газов, можно рассматривать как высоко конденсированные среды. В них молекулы (атомы) расположены значительно ближе друг к другу и силы взаимодействия на несколько порядков больше, чем в газах. Поэтому жидкости и твердые вещества имеют существенно ограниченные возможности для расширения, заведомо не могут занять произвольный объем, а при постоянных давлении и температуре сохраняют свой объем, в каком бы объеме их не размещали. Переходы из более упорядоченного по структуре агрегатного состояния в менее упорядоченное могут происходить и непрерывно. В связи с этим вместо понятия агрегатного состояния целесообразно пользоваться более широким понятием - понятием фазы.

Фазой называется совокупность всех частей системы, обладающих одинаковым химическим составом и находящихся в одинаковом состоянии. Это оправдано одновременным существованием термодинамически равновесных фаз в многофазной системе: жидкости со своим насыщенным паром; воды и льда при температуре плавления; двух несмешивающихся жидкостей (смесь воды с триэтиламином), отличающихся концентрациями; существованием аморфных твердых веществ, сохраняющих структуру жидкости (аморфное состояние).

Аморфное твердое состояние вещества является разновидностью переохлажденного состояния жидкости и отличается от обычных жидкостей существенно большей вязкостью и численными значениями кинетических характеристик.

Кристаллическое твердое состояние вещества - это агрегатное состояние, которое характеризуется большими силами взаимодействия между частицами вещества (атомами, молекулами, ионами). Частицы твердых тел совершают колебания около средних равновесных положений, называемых узлами кристаллической решетки; структура этих веществ характеризуется высокой степенью упорядоченности (дальним и ближним порядком) - упорядоченностью в расположении (координационный порядок), в ориентации (ориентационный порядок) структурных частиц, или упорядоченностью физических свойств (например, в ориентации магнитных моментов или электрических дипольных моментов). Область существования нормальной жидкой фазы для чистых жидкостей, жидкого и жидких кристаллов ограничена со стороны низких температур фазовыми переходами соответственно в твердое (кристаллизацией), сверхтекучее и жидко-анизотропное состояние.

В повседневной практике приходится иметь дело не отдельно с индивидуальными атомами, молекулами и ионами, а с реальными веществами — совокупностью большого количества частиц. В зависимости от характера их взаимодействия различают четыре вида агрегатного состояния: твердое, жидкое, газообразное и плазменное. Вещество может превращаться из одного агрегатного состояния в другое в результате соответствующего фазового перехода.

Пребывание вещества в том или ином агрегатном состоянии обусловлено силами, действующими между частицами, расстоянием между ними и особенностями их движения. Каждое агрегатное состояние характеризуется совокупностью определенных свойств.

Свойства веществ в зависимости от агрегатного состояния:

состояние свойство
газообразное
  1. Способность занимать весь объем и принимать форму сосуда;
  2. Сжимаемость;
  3. Быстрая диффузия в результате хаотического движения молекул;
  4. Значительное превышение кинетической энергии частиц над потенциальной, Е кинетич. > Е потенц.
жидкое
  1. Способность принимать форму той части сосуда, которую занимает вещество;
  2. Невозможность расширяться до заполнения всей емкости;
  3. Небольшая сжимаемость;
  4. Медленная диффузия;
  5. Текучесть;
  6. Соизмеримость потенциальной и кинетической энергии частиц, Е кинетич. ≈ Е потенц.
твердое
  1. Способность сохранять собственные форму и объем;
  2. Очень незначительная сжимаемость (под большим давлением)
  3. Очень медленная диффузия за счет колебательного движения частиц;
  4. Отсутствие текучести;
  5. Значительное превышение потенциальной энергии частиц над кинетической, Е кинетич. <Е потенц.

В соответствии со степенью упорядоченности в системе для каждого агрегатного состояния характерно собственное соотношение между кинетической и потенциальной энергиями частиц. В твердых телах потенциальная преобладает над кинетической, так как частицы занимают определенные положения и только колеблются вокруг них. Для газов наблюдается обратное соотношение между потенциальной и кинетической энергиями, как следствие того, что молекулы газа всегда хаотично движутся, а силы сцепления между ними почти отсутствуют, поэтому газ занимает весь объем. В случае жидкостей кинетическая и потенциальная энергии частиц примерно одинаковы, между частицами действует нежесткая связь, поэтому жидкостям присущи текучесть и постоянный при данной объем.

Когда частицы вещества образуют правильную геометрическую структуру, а энергия связей между ними больше энергии тепловых колебаний, что предотвращает разрушение сложившейся структуры — значит, вещество находится в твердом состоянии. Но начиная с некоторой температуры, энергия тепловых колебаний превышает энергию связей между частицами. При этом частицы, хотя и остаются в контакте, перемещаются друг относительно друга. В результате геометрическая структура нарушается и вещество переходит в жидкое состояние. Если тепловые колебания настолько возрастают, что между частицами практически теряется связь, вещество приобретает газообразное состояние. В «идеальном» газе частицы свободно перемещаются во всех направлениях.

При повышении температуры вещество переходит из упорядоченного состояния (твердое) в неупорядоченный состояние (газообразное) жидкое состояние является промежуточным по упорядоченности частиц.

Четвертым агрегатным состоянием называют плазму — газ, состоящий из смеси нейтральных и ионизированных частиц и электронов. Плазма образуется при сверхвысоких температурах (10 5 -10 7 0 С) за счет значительной энергии столкновения частиц, которые имеют максимальную неупорядоченность движения. Обязательным признаком плазмы, как и других состояний вещества, является ее электронейтральность. Но в результате неупорядоченности движения частиц в плазме могут возникать отдельные заряженные микрозоны, благодаря чему она становится источником электромагнитного излучения. В плазменном состоянии существует вещество на , звездах, других космических объектах, а также при термоядерных процессах.

Каждое агрегатное состояние определяется, прежде всего, интервалом температур и давлений, поэтому для наглядной количественной характеристики используют фазовую диаграмму вещества, которая показывает зависимость агрегатного состояния от давления и температуры.

Диаграмма состояния вещества с кривыми фазовых переходов: 1 — плавления-кристаллизации, 2 — кипения-конденсации, 3 — сублимации-десублимации

Диаграмма состояния состоит из трех основных областей, которые соответствуют кристаллическому, жидкому и газообразному состояниям. Отдельные области разделяются кривыми, отражающие фазовые переходы:

  1. твердого состояния в жидкое и, наоборот, жидкого в твердое (кривая плавления-кристаллизации — пунктирный зеленый график)
  2. жидкого в газообразное и обратного преобразования газа в жидкость (кривая кипения-конденсации — синий график)
  3. твердого состояния в газообразное и газообразного в твердое (кривая сублимации-десублимации — красный график).

Координаты пересечения этих кривых называются тройной точкой, в которой в условиях определенного давления Р=Р в и определенной температуры Т=T в вещество может сосуществовать сразу в трех агрегатных состояниях, причем жидкое и твердое состояние имеют одинаковое давление пара. Координаты Р в и Т в — это единственные значения давления и температуры, при которых могут одновременно сосуществовать все три фазы.

Точке К на фазовой диаграмме состояния отвечает температура Т к — так называемая критическая температура, при которой кинетическая энергия частиц превышает энергию их взаимодействия и поэтому стирается грань разделения между жидкой и газовой фазами, а вещество существует в газообразном состоянии по любым давлением.

Из анализа фазовой диаграммы следует, что при высоком давлении, большем чем в тройной точке (Р в), нагрев твердого вещества заканчивается его плавлением, например, при Р 1 плавления происходит в точке d . Дальнейшее повышение температуры от Т d к Т е приводит к кипению вещества при данном давлении Р 1 . При давлении Р 2 , меньшем, чем давление в тройной точке Р в, нагрев вещества приводит к его переходу непосредственно из кристаллического в газообразное состояние (точка q ), то есть к сублимации. Для большинства веществ давление в тройной точке ниже, чем давление насыщенного пара (Р в

Р насыщ.пара, поэтому при нагревании кристаллов таких веществ они не плавятся, а испаряются, то есть подвергаются сублимации. Например, так ведут себя кристаллы йода или «сухой лед» (твердый СО 2).


Анализ диаграммы состояния вещества

Газообразное состояние

При нормальных условиях (273 К, 101325 Па) в газообразном состоянии могут находиться как простые вещества, молекулы которых состоят из одного (Не, Ne, Ar) или из нескольких несложных атомов (Н 2 , N 2 , O 2), так и сложные вещества с малой молярной массой (СН 4 , HCl, C 2 H 6).

Поскольку кинетическая энергия частиц газа превышает их потенциальную энергию, то молекулы в газообразном состоянии непрерывно хаотически двигаются. Благодаря большим расстояниям между частицами силы межмолекулярного взаимодействия в газах настолько незначительны, что их не хватает для привлечения частиц друг к другу и удержания их вместе. Именно по этой причине газы не имеют собственной формы и характеризуются малой плотностью и высокой способностью к сжатию и к расширению. Поэтому газ постоянно давит на стенки сосуда, в котором он находится, одинаково во всех направлениях.

Для изучения взаимосвязи между важнейшими параметрами газа (давление Р, температура Т, количество вещества n, молярная масса М, масса m) используется простейшая модель газообразного состояния вещества — идеальный газ , которая базируется на следующих допущениях:

  • взаимодействием между частицами газа можно пренебречь;
  • сами частицы являются материальными точками, которые не имеют собственного размера.

Наиболее общим уравнением, описывающим модель идеального газа, считается уравнения Менделеева-Клапейрона для одного моля вещества:

Однако поведение реального газа отличается, как правило, от идеального. Это объясняется, во-первых, тем, что между молекулами реального газа все же действуют незначительные силы взаимного притяжения, которые в определенной степени сжимают газ. С учетом этого общее давление газа возрастает на величину a /V 2 , которая учитывает дополнительное внутреннее давление, обусловленное взаимным притяжением молекул. В результате общее давление газа выражается суммой Р+ а /V 2 . Во-вторых, молекулы реального газа имеют хоть и малый, но вполне определенный объем b , поэтому действительный объем всего газа в пространстве составляет V — b . При подстановке рассмотренных значений в уравнение Менделеева-Клапейрона получаем уравнение состояния реального газа, которое называется уравнением Ван-дер-Ваальса :

где а и b — эмпирические коэффициенты, которые определяются на практике для каждого реального газа. Установлено, что коэффициент a имеет большую величину для газов, которые легко сжижаются (например, СО 2 , NH 3), а коэффициент b — наоборот, тем выше по величине, чем больше размеры имеют молекулы газа (например, газообразные углеводороды).

Уравнение Ван-дер-Ваальса гораздо точнее описывает поведение реального газа, чем уравнения Менделеева-Клапейрона, которое тем не менее, благодаря наглядному физическому смыслу широко используется в практических расчетах. Хотя идеальное состояние газа является предельным, мнимым случаем, однако простота законов, которые ему отвечают, возможность их применения для описания свойств многих газов в условиях низких давлений и высоких температур делает модель идеального газа очень удобной.

Жидкое состояние вещества

Жидкое состояние любого конкретного вещества являются термодинамически устойчивым в определенном интервале температур и давлений, характерных для природы (состава) данного вещества. Верхний температурный предел жидкого состояния — температура кипения, выше которой вещество в условиях устойчивого давления находится в газообразном состоянии. Нижняя граница устойчивого состояния существования жидкости — температура кристаллизации (затвердевания). Температуры кипения и кристаллизации, измеренные при давлении 101,3 кПа, называются нормальными.

Для обычных жидкостей присуща изотропность — единообразие физических свойств во всех направлениях внутри вещества. Иногда для изотропности употребляют и другие термины: инвариантность, симметрия относительно выбора направления.

В формировании взглядов на природу жидкого состояния важное значение имеет представление о критическом состоянии, который был открыт Менделеевым (1860 г.):

Критическое состояние — это равновесное состояние, при котором предел разделения между жидкостью и ее паром исчезает, поскольку жидкость и ее насыщенный пар приобретают одинаковые физические свойства.

В критическом состоянии значение как плотностей, так и удельных объемов жидкости и ее насыщенного пара становятся одинаковыми.

Жидкое состояние вещества является промежуточным между газообразным и твердым. Некоторые свойства приближают жидкое состояние к твердому. Если для твердых веществ характерна жесткая упорядоченность частиц, которая распространяется на расстояние до сотен тысяч межатомных или межмолекулярных радиусов, то в жидком состоянии наблюдается, как правило, не более нескольких десятков упорядоченных частиц. Объясняется это тем, что упорядоченность между частицами в разных местах жидкого вещества быстро возникает, и так же быстро снова «размывается» тепловым колебаниям частиц. Вместе с тем общая плотность «упаковки» частиц мало отличается от твердого вещества, поэтому плотность жидкостей не сильно отличается от плотности большинства твердых тел. К тому же способность жидкостей к сжатию почти такая же мала, что и в твердых тел (примерно в 20000 раз меньше, чем у газов).

Структурный анализ подтвердил, что в жидкостях наблюдается так называемый ближний порядок , который означает, что число ближайших «соседей» каждой молекулы и их взаимное расположение примерно одинаковы по всему объему.

Относительно небольшое количество различных по составу частиц, соединенных силами межмолекулярного взаимодействия, называется кластером . Если все частицы в жидкости одинаковы, то такой кластер называется ассоциатом . Именно в кластерах и ассоциатах наблюдается ближний порядок.

Степень упорядоченности в различных жидкостях зависит от температуры. При низких температурах, незначительно превышающих температуру плавления, степень упорядоченности размещения частиц очень большая. С повышением температуры она уменьшается и по мере нагревания свойства жидкости все больше приближаются к свойствам газов, а по достижении критической температуры разница между жидким и газообразным состоянием исчезает.

Близость жидкого состояния к твердому подтверждается значениями стандартных энтальпий испарения DН 0 испарения и плавления DН 0 плавления. Напомним, что величина DН 0 испарения показывает количество теплоты, которая нужна для преобразования 1 моля жидкости в пар при 101,3 кПа; такое же количество теплоты расходуется на конденсацию 1 моля пара в жидкость при тех же условиях (т.е. DН 0 испарения = DН 0 конденсации). Количество теплоты, затрачиваемое на превращение 1 моля твердого вещества в жидкость при 101,3 кПа, называется стандартной энтальпией плавления ; такое же количество теплоты высвобождается при кристаллизации 1 моля жидкости в условиях нормального давления (DН 0 плавления = DН 0 кристаллизации). Известно, что DН 0 испарения << DН 0 плавления, поскольку переход из твердого состояния в жидкое сопровождается меньшим нарушением межмолекулярного притяжения, чем переход из жидкого в газообразное состояние.

Однако другие важные свойства жидкостей больше напоминают свойства газов. Так, подобно газам, жидкости могут течь — это свойство называется текучестью . Они могут сопротивляться течению, то есть им присуща вязкость . На эти свойства влияют силы притяжения между молекулами, молекулярная масса жидкого вещества и другие факторы. Вязкость жидкостей примерно в 100 раз больше, чем у газов. Так же, как и газы, жидкости способны диффундировать, но гораздо медленнее, поскольку частицы жидкости упакованы плотнее, чем частицы газа.

Одной из самых интересных свойств жидкого состояния, которая не характерна ни для газов, ни для твердых веществ, является поверхностное натяжение .


Схема поверхностного натяжения жидкости

На молекулу, находящуюся в объеме жидкости, со всех сторон равномерно действуют межмолекулярные силы. Однако на поверхности жидкости баланс этих сил нарушается, вследствие чего поверхностные молекулы находятся под действием некоторой результирующей силы, которая направлена ​​внутрь жидкости. По этой причине поверхность жидкости находится в состоянии натяжения. Поверхностное натяжение — это минимальная сила, которая удерживает частицы жидкости внутри и тем самым предотвращает сокращении поверхности жидкости.

Строение и свойства твердых веществ

Большинство известных веществ как природного, так и искусственного происхождения при обычных условиях находятся в твердом состоянии. Из всех известных на сегодня соединений около 95% относятся к твердым веществам, которые приобрели важное значение, поскольку является основой не только конструкционных, но и функциональных материалов.

  • Конструкционные материалы — это твердые вещества или их композиции, которые используются для изготовления орудий труда, предметов быта, и различных других конструкций.
  • Функциональные материалы — это твердые вещества, использование которых обусловлено наличием в них тех или иных полезных свойств.

Например, сталь, алюминий, бетон, керамика принадлежат к конструкционным материалам, а полупроводники, люминофоры — к функциональным.

В твердом состоянии расстояния между частицами вещества маленькие и имеют по величине такой же порядок, что и сами частицы. Энергии взаимодействия между ними достаточно велики, что предотвращает свободное движение частиц — они могут только колебаться относительно определенных равновесных положений, например, вокруг узлов кристаллической решетки. Неспособность частиц к свободному перемещению приводит к одной из самых характерных особенностей твердых веществ — наличие собственной формы и объема. Способность к сжатию у твердых веществ очень незначительна, а плотность высокая и мало зависит от изменения температуры. Все процессы, происходящие в твердом веществе, происходят медленно. Законы стехиометрии для твердых веществ имеют другой и, как правило, более широкий смысл, чем для газообразных и жидких веществ.

Подробное описание твердых веществ слишком объемно для этого материала и поэтому рассматривается в отдельных статьях: , и .

Агрегатное состояние - это состояние вещества в определенном интервале температур и давлений, характеризуется свойствами: способностью (твердое тело) или неспособностью (жидкость, газ) сохранять объем и форму; наличием или отсутствием дальнего (твердое тело) или ближнего (жидкость) порядка и другими свойствами.

Вещество может находиться в трех агрегатных состояниях: твердом, жидком или газообразном, в настоящее время выделяют дополнительно плазменное (ионное) состояние.

В газообразном состоянии расстояние между атомами и молекулами вещества велико, силы взаимодействия малы и частицы, хаотично перемещаясь в пространстве, обладают большой кинетической энергией , превышающей потенциальную энергию. Материал в газообразном состоянии не имеет ни своей формы, ни объема. Газ заполняет все доступное пространство. Это состояние свойственно для веществ с малой плотностью.

В жидком состоянии сохраняется лишь ближний порядок атомов или молекул , когда в объеме вещества периодически возникают отдельные участки с упорядоченным расположением атомов, однако взаимная ориентация этих участков также отсутствует. Ближний порядок неустойчив и под действием тепловых колебаний атомов может либо исчезать, либо возникать вновь. Молекулы жидкости не имеют определенного положения, и в то же время им недоступна полная свобода перемещения. Материал в жидком состоянии своей формы не имеет, сохраняет лишь объем. Жидкость может занимать только часть объема сосуда, но свободно перетекать по всей поверхности сосуда. Жидкое состояние обычно считают промежуточным между твердым телом и газом.

В твердом веществе порядок расположения атомов становится строго определенным, закономерно упорядоченным, силы взаимодействия частиц взаимно уравновешены, поэтому тела сохраняют свою форму и объем. Закономерно упорядоченное расположение атомов в пространстве характеризует кристаллическое состояние, атомы образуют кристаллическую решетку.

Твердые тела имеют аморфное или кристаллическое строение. Для аморфных тел характерен только ближний порядок в расположении атомов или молекул, хаотичное расположение атомов, молекул или ионов в пространстве. Примерами аморфных тел являются стекло, пек, вар, внешне находящиеся в твердом состоянии, хотя на самом деле они медленно текут, подобно жидкости. Определенной температуры плавления у аморфных тел, в отличие от кристаллических, нет. Аморфные тела занимают промежуточное положение между кристаллическими твердыми телами и жидкостями.

Большинство твердых тел имеет кристаллическое строение, которое отличается упорядоченным расположением атомов или молекул в пространстве. Для кристаллической структуры свойственен дальний порядок, когда элементы структуры периодически повторяются; при ближнем порядке такое правильное повторение отсутствует. Характерной особенностью кристаллического тела является способность сохранять форму. Признаком идеального кристалла, моделью которого служит пространственная решетка, является свойство симметрии. Под симметрией понимается теоретическая способность кристаллической решетки твердого тела совмещаться самой с собой при зеркальном отражении ее точек от некоторой плоскости, называемой плоскостью симметрии. Симметрия внешней формы отражает симметрию внутренней структуры кристалла. Кристаллическую структуру имеют, например, все металлы, для которых характерны два типа симметрии: кубическая и гексагональная.


В аморфных структурах с неупорядоченным распределением атомов свойства вещества в разных направлениях одинаковы, т. е стеклообразные (аморфные) вещества изотропны.

Для всех кристаллов характерна анизотропия . В кристаллах расстояния между атомами упорядочены, но в разных направлениях степень упорядоченности может быть неодинаковой, что приводит к различию свойств вещества кристалла в разных направлениях. Зависимость свойств вещества кристалла от направления в его решетке называют анизотропией свойств. Анизотропия проявляется при измерении как физических, так и механических и других характеристик. Существуют свойства (плотность, теплоемкость), не зависящие от направления в кристалле. Большинство же характеристик зависит от выбора направления.

Измерить свойства возможно у объектов, имеющих определенный материальный объем: размеры - от нескольких миллиметров до десятков сантиметров. Эти объекты со строением, идентичным кристаллической ячейке, называются монокристаллами.

Анизотропия свойств проявляется в монокристаллах и практически отсутствует в поликристаллическом веществе, состоящем из множества мелких хаотично ориентированных кристаллов. Поэтому поликристаллические вещества называют квазиизотропными.

Кристаллизация полимеров, молекулы которых могут располагаться упорядоченно с образованием надмолекулярных структур в виде пачек, клубков (глобул), фибрилл и пр., происходит в определенном интервале температур. Сложное строение молекул и их агрегатов определяет специфику поведения полимеров при нагреве. Они не могут перейти в жидкое состояние с низкой вязкостью, не имеют газообразного состояния. В твердом виде полимеры могут находиться в стеклообразном, высокоэластическом и вязкотекучем состояниях. Полимеры с линейными или разветвленными молекулами при изменении температуры могут переходить из одного состояния в другое, что проявляется в процессе деформации полимера. На рис. 9 приведена зависимость деформации от температуры.

Рис. 9 Термомеханическая кривая аморфного полимера : t c , t т, t р - температуры стеклования, текучести и начала химического разложения соответственно; I - III - зоны стеклообразного, высокоэластического и вязкотекучего состояния соответственно; Δl - деформация.

Пространственная структура расположения молекул определяет только стеклообразное состояние полимера. При низких температурах все полимеры деформируются упруго (рис. 9, зона I ). Выше температуры стеклования t c аморфный полимер с линейной структурой переходит в высокоэластическое состояние (зона II ), и его деформация в стеклообразном и высокоэластическом состояниях обратима. Нагрев выше температуры текучести t т переводит полимер в вязкотекучее состояние (зона III ). Деформация полимера в вязкотекучем состоянии необратима. Аморфный полимер с пространственной (сетчатой, сшитой) структурой не имеет вязкотекучего состояния, температурная область высокоэластического состояния расширяется до температуры разложения полимера t р. Такое поведение характерно для материалов типа резин.

Температура вещества в любом агрегатном состоянии характеризует среднюю кинетическую энергию его частиц (атомов и молекул). Эти частицы в телах обладают в основном кинетической энергией колебательных движений относительно центра равновесия, где энергия минимальна. При достижении некоторой критической температуры твердый материал теряет свою прочность (устойчивость) и расплавляется, а жидкость превращается в пар: кипит и испаряется. Этими критическими температурами являются температуры плавления и кипения.

При нагреве кристаллического материала при определенной температуре молекулы двигаются настолько энергично, что жесткие связи в полимере нарушаются и кристаллы разрушаются - переходят в жидкое состояние. Температура, при которой кристаллы и жидкость находятся в равновесии, называется точкой плавления кристалла, или точкой затвердевания жидкости. Для иода эта температура равна 114 о С.

Каждый химический элемент обладает индивидуальной температурой плавления t пл, разделяющей существование твердого тела и жидкости, и температурой кипения t кип, соответствующей переходу жидкости в газ. При этих температурах вещества находятся в термодинамическом равновесии. Изменение агрегатного состояния может сопровождаться скачкообразным изменением свободной энергии, энтропии, плотности и других физических величин.

Для описания различных состояний в физике используется более широкое понятие термодинамической фазы. Явления, описывающие переходы из одной фазы в другую, называют критическими.

При нагревании вещества претерпевают фазовые превращения. Медь при плавлении (1083 о С) превращается в жидкость, в которой атомы имеют только ближний порядок. При давлении 1 атм медь кипит при 2310 о С и превращается в газообразную медь с беспорядочно расположенными атомами меди. В точке плавления давления насыщенного пара кристалла и жидкости равны.

Материал в целом представляет собой систему.

Система - группа веществ, объединенных физическими, химическими или механическими взаимодействиями. Фазой называют однородную часть системы, отделенную от других частей физическими границами раздела (в чугуне: графит + зерна железа; в воде со льдом: лед + вода). Составные части системы - это различные фазы, образующие данную систему. Компоненты системы - это вещества, образующие все фазы (составные части) данной системы.

Материалы, состоящие из двух и более фаз, представляют собой дисперсные системы . Дисперсныесистемы разделяют на золи, поведение которых напоминает поведение жидкостей, и гели с характерными свойствами твердых тел. В золях дисперсионной средой, в которой распределено вещество, является жидкость, в гелях преобладает твердая фаза. Гелями являются полукристаллический металл, бетон, раствор желатина в воде при низкой температуре (при высокой температуре желатин переходит в золь). Гидрозолем называют дисперсию в воде, аэрозолем - дисперсию в воздухе.

Диаграммы состояния.

В термодинамической системе каждая фаза характеризуется такими параметрами, как температура Т , концентрация с и давление Р . Для описания фазовых превращений используется единая энергетическая характеристика - свободная энергия Гиббса ΔG (термодинамический потенциал).

Термодинамика при описании превращений ограничивается рассмотрением состояния равновесия. Равновесное состояние термодинамической системы характеризуется неизменностью термодинамических параметров (температуры и концентрации, так как в технологических обработках Р = const) во времени и отсутствием в ней потоков энергии и вещества - при постоянстве внешних условий. Фазовое равновесие - равновесное состояние термодинамической системы, состоящей из двух или большего числа фаз.

Для математического описания условий равновесия системы существует правило фаз , выведенное Гиббсом. Оно связывает число фаз (Ф) и компонентов (К) в равновесной системе с вариантностью системы, т. е. числом термодинамических степеней свободы (С).

Число термодинамических степеней свободы (вариантность) системы - это число независимых переменных как внутренних (химический состав фаз), так и внешних (температура), которым можно придавать различные произвольные (в некотором интервале) значения так, чтобы не появились новые и не исчезли старые фазы.

Уравнение правила фаз Гиббса:

С = К - Ф + 1.

В соответствии с этим правилом в системе из двух компонентов (К = 2) возможны следующие варианты степеней свободы:

Для однофазного состояния (Ф = 1) С = 2, т. е. можно менять температуру и концентрацию;

Для двухфазного состояния (Ф = 2) С = 1, т. е. можно менять только один внешний параметр (например, температуру);

Для трехфазного состояния число степеней свободы равно нулю, т. е. нельзя менять температуру без нарушения равновесия в системе (система нонвариантна).

Например, для чистого металла (К = 1) во время кристаллизации, когда имеются две фазы (Ф = 2), число степеней свободы равно нулю. Это означает, что температура кристаллизации не может быть изменена, пока не закончится процесс и не останется одна фаза - твердый кристалл. После окончания кристаллизации (Ф = 1) число степеней свободы равно 1, поэтому можно менять температуру, т. е. охлаждать твердое вещество, не нарушая равновесия.

Поведение систем в зависимости от температуры и концентрации описывается диаграммой состояния. Диаграмма состояния воды — система с одним компонентом H 2 O, поэтому наибольшее число фаз, которые одновременно могут находиться в равновесии, равно трем (рис. 10). Эти три фазы — жидкость, лед, пар. Число степеней свободы в этом случае равно нулю, т.е. нельзя изменить ни давление, ни температуру, чтобы не исчезла ни одна из фаз. Обычный лед, жидкая вода и водяной пар могут существовать в равновесии одновременно только при давлении 0,61 кПа и температуре 0,0075°С. Точка сосуществования трех фаз называется тройной точкой (O ).

Кривая ОС разделяет области пара и жидкости и представляет собой зависимость давления насыщенного водяного пара от температуры. Кривая ОС показывает те взаимосвязанные значения температуры и давления, при которых жидкая вода и водяной пар находятся в равновесии друг с другом, поэтому она называется кривой равновесия жидкость — пар или кривой кипения.

Рис 10 Диаграмма состояния воды

Кривая ОВ отделяет область жидкости от области льда. Она является кривой равновесия твердое состояние — жидкость и называется кривой плавления. Эта кривая показывает те взаимосвязанные пары значений температуры и давления, при которых лед и жидкая вода находятся в равновесии.

Кривая OA называется кривой сублимации и показывает взаимосвязанные пары значений давления и температуры, при которых в равновесии находятся лед и водяной пар.

Диаграмма состояния — наглядный способ представления областей существования различных фаз в зависимости от внешних условий, например от давления и температуры. Диаграммы состояния активно используются в материаловедении на разных технологических этапах получения изделия.

Жидкость отличается от твердого кристаллического тела малыми значениями вязкости (внутреннего трения молекул) и высокими значениями текучести (величина, обратная вязкости). Жидкость состоит из множества агрегатов молекул, внутри которых частицы расположены в определенном порядке, подобно порядку в кристаллах. Природа структурных единиц и межчастичного взаимодействия определяет свойства жидкости. Различают жидкости: моноатомные (сжиженные благородные газы), молекулярные (вода), ионные (расплавленные соли), металлические (расплавленные металлы), жидкие полупроводники. В большинстве случаев жидкость является не только агрегатным состоянием, но и термодинамической (жидкой) фазой.

Жидкие вещества чаще всего представляет собой растворы. Раствор однороден, но не является химически чистым веществом, состоит из растворенного вещества и растворителя (примеры растворителя - вода или органические растворители: дихлорэтан, спирт, четыреххлористый углерод и др.), поэтому представляет собой смесь веществ. Пример - раствор спирта в воде. Однако растворами также являются смеси газообразных (например, воздух) или твердых (сплавы металлов) веществ.

При охлаждении в условиях малой скорости образования центров кристаллизации и сильного увеличения вязкости может возникнуть стеклообразное состояние. Стекла - это изотропные твердые материалы, получаемые переохлаждением расплавленных неорганических и органических соединений.

Известно много веществ, переход которых из кристаллического состояния в изотропное жидкое осуществляется через промежуточное жидкокристаллическое состояние. Оно характерно для веществ, молекулы которых имеют форму длинных стержней (палочек) с асимметричным строением. Такие фазовые переходы, сопровождаемые тепловыми эффектами, вызывают скачкообразное изменение механических, оптических, диэлектрических и других свойств.

Жидкие кристаллы , подобно жидкости, могут принимать форму удлиненной капли или форму сосуда, обладают высокой текучестью, способны к слиянию. Они получили широкое применение в разных областях науки и техники. Их оптические свойства сильно зависят от небольших изменений внешних условий. Эта особенность используется в электрооптических устройствах. В частности, жидкие кристаллы применяют при изготовлении электронных наручных часов, визуальной аппаратуры и др.

К числу основных агрегатных состояний относится плазма - частично или полностью ионизированный газ. По способу образования различают два вида плазмы: термическую, возникающую при нагревании газа до высоких температур, и газообразную, образующуюся при электрических разрядах в газовой среде.

Плазмохимические процессы заняли прочное место в ряде отраслей техники. Они применяются для резки и сварки тугоплавких металлов, синтеза разных веществ, широко используют плазменные источники света, перспективно применение плазмы в термоядерных энергетических установках и пр.

Агрегатные состояния. Жидкости. Фазы в термодинамике. Фазовые переходы.

Лекция 1.16

Все вещества могут существовать в трех агрегатных состояниях - твердом, жидком и газообразном . Переходы между ними сопровождаются скачкообразным изменением ряда физических свойств (плотности, теплопроводности и др.).

Агрегатное состояние зависит от физических условий, в которых находится вещество. Существование у вещества нескольких агрегатных состояний обусловлено различиями в тепловом движении его молекул (атомов) и в их взаимодействии при разных условиях.

Газ - агрегатное состояние вещества, в котором частицы не связаны или весьма слабо связаны силами взаимодействия; кинетическая энергия теплового движения его частиц (молекул, атомов) значительно превосходит потенциальную энергию взаимодействий между ними, поэтому частицы движутся почти свободно, целиком заполняя сосуд, в котором находятся, и принимают его форму. В газообразном состоянии вещество не имеет ни собственного объема, ни собственной формы. Любое вещество можно перевести в газообразное, изменяя давление и температуру.

Жидкость - агрегатное состояние вещества, промежуточное между твердым и газообразным. Для нее характерна большая подвижность частиц и малое свободное пространство между ними. Это приводит к тому, что жидкости сохраняют свой объем и принимают форму сосуда. В жидкости молекулы размещаются очень близко друг к другу. Поэтому плотность жидкости гораздо больше плотности газов (при нормальном давлении). Свойства жидкости по всем направлениям одинаковы (изотропны) за исключением жидких кристаллов. При нагревании или уменьшении плотности свойства жидкости, теплопроводность, вязкость меняются, как правило, в сторону сближения со свойствами газов.

Тепловое движение молекул жидкости состоит из сочетания коллективных колебательных движений и происходящих время от времени скачков молекул из одних положений равновесия в другие.

Твердые (кристаллические) тела - агрегатное состояние вещества, характеризующееся стабильностью формы и характером теплового движения атомов. Это движение представляет собой колебания атомов (или ионов), из которых состоит твердое тело. Амплитуда колебаний обычно мала по сравнению с межатомными расстояниями.

Свойства жидкостей.

Молекулы вещества в жидком состоянии расположены почти вплотную друг к другу. В отличие от твердых кристаллических тел, в которых молекулы образуют упорядоченные структуры во всем объеме кристалла и могут совершать тепловые колебания около фиксированных центров, молекулы жидкости обладают большей свободой. Каждая молекула жидкости, так же как и в твердом теле, «зажата» со всех сторон соседними молекулами и совершает тепловые колебания около некоторого положения равновесия. Однако, время от времени любая молекула может переместиться в соседнее вакантное место. Такие перескоки в жидкостях происходят довольно часто; поэтому молекулы не привязаны к определенным центрам, как в кристаллах, и могут перемещаться по всему объему жидкости. Этим объясняется текучесть жидкостей. Из-за сильного взаимодействия между близко расположенными молекулами они могут образовывать локальные (неустойчивые) упорядоченные группы, содержащие несколько молекул. Это явление называется ближним порядком .



Вследствие плотной упаковки молекул сжимаемость жидкостей, т. е. изменение объема при изменении давления, очень мала; она в десятки и сотни тысяч раз меньше, чем в газах. Например, для изменения объема воды на 1 % нужно увеличить давление приблизительно в 200 раз. Такое увеличение давления по сравнению с атмосферным достигается на глубине около 2 км.

Жидкости, как и твердые тела, изменяют свой объем при изменении температуры. Для не очень больших интервалов температур относительное изменение объема ΔV / V 0 пропорционально изменению температуры ΔT :

Коэффициент β называют температурным коэффициентом объемногорасширения . Этот коэффициент у жидкостей в десятки раз больше, чем у твердых тел. У воды, например, при температуре 20 °С β в ≈ 2·10 –4 К –1 , у стали - β ст ≈ 3,6·10 –5 К –1 , у кварцевого стекла - β кв ≈ 9·10 –6 К –1 .

Тепловое расширение воды имеет интересную и важную для жизни на Земле аномалию. При температуре ниже 4 °С вода расширяется при понижении температуры (β < 0). Максимум плотности ρ в = 10 3 кг/м 3 вода имеет при температуре 4 °С.

При замерзании вода расширяется, поэтому лед остается плавать на поверхности замерзающего водоема. Температура замерзающей воды подо льдом равна 0 °С. В более плотных слоях воды у дна водоема температура оказывается порядка 4 °С. Благодаря этому, жизнь может существовать в воде замерзающих водоемов.

Наиболее интересной особенностью жидкостей является наличие свободнойповерхности . Жидкость, в отличие от газов, не заполняет весь объем сосуда, в который она налита. Между жидкостью и газом (или паром) образуется граница раздела, которая находится в особых условиях по сравнению с остальной массой жидкости. Молекулы в пограничном слое жидкости, в отличие от молекул в ее глубине, окружены другими молекулами той же жидкости не со всех сторон. Силы межмолекулярного взаимодействия, действующие на одну из молекул внутри жидкости со стороны соседних молекул, в среднем взаимно скомпенсированы. Любая молекула в пограничном слое притягивается молекулами, находящимися внутри жидкости (силами, действующими на данную молекулу жидкости со стороны молекул газа (или пара) можно пренебречь). В результате появляется некоторая равнодействующая сила, направленная вглубь жидкости. Поверхностные молекулы силами межмолекулярного притяжения втягиваются внутрь жидкости. Но все молекулы, в том числе и молекулы пограничного слоя, должны находиться в состоянии равновесия. Это равновесие достигается за счет некоторого уменьшения расстояния между молекулами поверхностного слоя и их ближайшими соседями внутри жидкости. При уменьшении расстояния между молекулами возникают силы отталкивания. Если среднее расстояние между молекулами внутри жидкости равно r 0 , то молекулы поверхностного слоя упакованы несколько более плотно, а поэтому они обладают дополнительным запасом потенциальной энергии по сравнению с внутренними молекулами. Следует иметь в виду, что вследствие крайне низкой сжимаемости наличие более плотно упакованного поверхностного слоя не приводит к сколь нибудь заметному изменению объема жидкости. Если молекула переместится с поверхности внутрь жидкости, силы межмолекулярного взаимодействия совершат положительную работу. Наоборот, чтобы вытащить некоторое количество молекул из глубины жидкости на поверхность (т. е. увеличить площадь поверхности жидкости), внешние силы должны совершить положительную работу A внеш, пропорциональную изменению ΔS площади поверхности:

A внеш = σΔS .

Коэффициент σ называется коэффициентом поверхностного натяжения (σ > 0). Таким образом, коэффициент поверхностного натяжения равен работе, необходимой для увеличения площади поверхности жидкости при постоянной температуре на единицу.

В СИ коэффициент поверхностного натяжения измеряется в джоулях наметр квадратный (Дж/м 2) или в ньютонах на метр(1 Н/м = 1 Дж/м 2).

Следовательно, молекулы поверхностного слоя жидкости обладают избыточной по сравнению с молекулами внутри жидкости потенциальнойэнергией . Потенциальная энергия E р поверхности жидкости пропорциональна ее площади: (1.16.1)

Из механики известно, что равновесным состояниям системы соответствует минимальное значение ее потенциальной энергии. Отсюда следует, что свободная поверхность жидкости стремится сократить свою площадь. По этой причине свободная капля жидкости принимает шарообразную форму. Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, сокращающие (стягивающие) эту поверхность. Эти силы называются силами поверхностного натяжения .

Наличие сил поверхностного натяжения делает поверхность жидкости похожей на упругую растянутую пленку, с той только разницей, что упругие силы в пленке зависят от площади ее поверхности (т. е. от того, как пленка деформирована), а силы поверхностного натяжения не зависят от площади поверхности жидкости.

Силы поверхностного натяжения стремятся сократить поверхность пленки. Поэтому можно записать: (1.16.2)

Таким образом, коэффициент поверхностного натяжения σ может быть определен как модуль силы поверхностного натяжения, действующей наединицу длины линии, ограничивающей поверхность (l - длина этой линии).

Из-за действия сил поверхностного натяжения в каплях жидкости и внутри мыльных пузырей возникает избыточное давление Δp . Если мысленно разрезать сферическую каплю радиуса R на две половинки, то каждая из них должна находиться в равновесии под действием сил поверхностного натяжения, приложенных к границе разреза длиной 2πR и сил избыточного давления, действующих на площадь πR 2 сечения (рис.1.16.1). Условие равновесия записывается в виде

Вблизи границы между жидкостью, твердым телом и газом форма свободной поверхности жидкости зависит от сил взаимодействия молекул жидкости с молекулами твердого тела (взаимодействием с молекулами газа (или пара) можно пренебречь). Если эти силы больше сил взаимодействия между молекулами самой жидкости, то жидкость смачивает поверхность твердого тела. В этом случае жидкость подходит к поверхности твердого тела под некоторым острым углом θ, характерным для данной пары жидкость – твердое тело. Угол θ называется краевым углом . Если силы взаимодействия между молекулами жидкости превосходят силы их взаимодействия с молекулами твердого тела, то краевой угол θ оказывается тупым (рис.1.16.2(2)). В этом случае говорят, что жидкость не смачивает поверхность твердого тела. В противном случае (угол - острый) жидкость смачивает поверхность (рис.1.16.2(1)). При полномсмачивании θ = 0, при полном несмачивании θ = 180°.

Капиллярными явлениями называют подъем или опускание жидкости в трубках малого диаметра – капиллярах . Смачивающие жидкости поднимаются по капиллярам, несмачивающие – опускаются.

На рис.1.16.3 изображена капиллярная трубка некоторого радиуса r , опущенная нижним концом в смачивающую жидкость плотности ρ. Верхний конец капилляра открыт. Подъем жидкости в капилляре продолжается до тех пор, пока сила тяжести действующая на столб жидкости в капилляре, не станет равной по модулю результирующей F н сил поверхностного натяжения, действующих вдоль границы соприкосновения жидкости с поверхностью капилляра: F т = F н, где F т = mg = ρh πr 2 g , F н = σ2πr cos θ.

Отсюда следует:

При полном смачивании θ = 0, cos θ = 1. В этом случае

При полном несмачивании θ = 180°, cos θ = –1 и, следовательно, h < 0. Уровень несмачивающей жидкости в капилляре опускается ниже уровня жидкости в сосуде, в которую опущен капилляр.

Вода практически полностью смачивает чистую поверхность стекла. Наоборот, ртуть полностью не смачивает стеклянную поверхность. Поэтому уровень ртути в стеклянном капилляре опускается ниже уровня в сосуде.

Публикации по теме