Производная с 40. Производная сложной функции. Примеры решений. Как НЕ надо вычислять производные

Как найти производную, как взять производную? На данном уроке мы научимся находить производные функций. Но перед изучением данной страницы я настоятельно рекомендую ознакомиться с методическим материалом Горячие формулы школьного курса математики . Справочное пособие можно открыть или закачать на странице Математические формулы и таблицы . Также оттуда нам потребуется Таблица производных , ее лучше распечатать, к ней часто придется обращаться, причем, не только сейчас, но и в оффлайне.

Есть? Приступим. У меня для Вас есть две новости: хорошая и очень хорошая. Хорошая новость состоит в следующем: чтобы научиться находить производные, совсем не обязательно знать и понимать, что такое производная . Более того, определение производной функции, математический, физический, геометрический смысл производной целесообразнее переварить позже, поскольку качественная проработка теории, по моему мнению, требует изучения ряда других тем, а также некоторого практического опыта.
И сейчас наша задача освоить эти самые производные технически. Очень хорошая новость состоит в том, что научиться брать производные не так сложно, существует довольно чёткий алгоритм решения (и объяснения) этого задания, интегралы или пределы , например, освоить труднее.

Советую следующий порядок изучения темы : во-первых, эта статья. Затем нужно прочитать важнейший урок Производная сложной функции . Эти два базовых занятия позволят поднять Ваши навыки с полного нуля. Далее можно будет ознакомиться с более сложными производными в статье Сложные производные. Логарифмическая производная . Если планка окажется слишком высока, то сначала прочитайте вещь Простейшие типовые задачи с производной . Помимо нового материала, на уроке рассмотрены другие, более простые типы производных, и есть прекрасная возможность улучшить свою технику дифференцирования. Кроме того, в контрольных работах почти всегда встречаются задания на нахождение производных функций, которые заданы неявно или параметрически. Такой урок тоже есть: Производные неявных и параметрически заданных функций .

Я попытаюсь в доступной форме, шаг за шагом, научить Вас находить производные функций. Вся информация изложена подробно, простыми словами.

Собственно, сразу рассмотрим пример:

Пример 1

Найти производную функции

Решение:

Это простейший пример, пожалуйста, найдите его в таблице производных элементарных функций. Теперь посмотрим на решение и проанализируем, что же произошло? А произошла следующая вещь: у нас была функция , которая в результате решения превратилась в функцию .

Говоря совсем просто, для того чтобы найти производную функции, нужно по определенным правилам превратить её в другую функцию . Посмотрите еще раз на таблицу производных – там функции превращаются в другие функции. Единственным исключением является экспоненциальная функция , которая превращается сама в себя. Операция нахождения производной называется дифференцированием .

Обозначения : Производную обозначают или .

ВНИМАНИЕ, ВАЖНО! Забыть поставить штрих (там, где надо), либо нарисовать лишний штрих (там, где не надо) – ГРУБАЯ ОШИБКА! Функция и её производная – это две разные функции!

Вернемся к нашей таблице производных. Из данной таблицы желательно запомнить наизусть : правила дифференцирования и производные некоторых элементарных функций, особенно:

производную константы:
, где – постоянное число;

производную степенной функции:
, в частности: , , .

Зачем запоминать? Данные знания являются элементарными знаниями о производных. И если Вы не сможете ответить преподавателю на вопрос «Чему равна производная числа?», то учеба в ВУЗе может для Вас закончиться (лично знаком с двумя реальными случаями из жизни). Кроме того, это наиболее распространенные формулы, которыми приходится пользоваться практически каждый раз, когда мы сталкиваемся с производными.

В реальности простые табличные примеры – редкость, обычно при нахождении производных сначала используются правила дифференцирования, а затем – таблица производных элементарных функций.

В этой связи переходим к рассмотрению правил дифференцирования :


1) Постоянное число можно (и нужно) вынести за знак производной

Где – постоянное число (константа)

Пример 2

Найти производную функции

Смотрим в таблицу производных. Производная косинуса там есть, но у нас .

Самое время использовать правило, выносим постоянный множитель за знак производной:

А теперь превращаем наш косинус по таблице:

Ну и результат желательно немного «причесать» – ставим минус на первое место, заодно избавляясь от скобок:


2) Производная суммы равна сумме производных

Пример 3

Найти производную функции

Решаем. Как Вы, наверное, уже заметили, первое действие, которое всегда выполняется при нахождении производной, состоит в том, что мы заключаем в скобки всё выражение и ставим штрих справа вверху:

Применяем второе правило:

Обратите внимание, что для дифференцирования все корни, степени нужно представить в виде , а если они находятся в знаменателе, то переместить их вверх. Как это сделать – рассмотрено в моих методических материалах.

Теперь вспоминаем о первом правиле дифференцирования – постоянные множители (числа) выносим за знак производной:

Обычно в ходе решения эти два правила применяют одновременно (чтобы не переписывать лишний раз длинное выражение).

Все функции, находящиеся под штрихами, являются элементарными табличными функциями, с помощью таблицы осуществляем превращение:

Можно всё оставить в таком виде, так как штрихов больше нет, и производная найдена. Тем не менее, подобные выражения обычно упрощают:

Все степени вида желательно снова представить в виде корней, степени с отрицательными показателями – сбросить в знаменатель. Хотя этого можно и не делать, ошибкой не будет.

Пример 4

Найти производную функции

Попробуйте решить данный пример самостоятельно (ответ в конце урока). Желающие также могут воспользоваться интенсивным курсом в pdf-формате, который особенно актуален, если у вас в распоряжении совсем мало времени.


3) Производная произведения функций

Вроде бы по аналогии напрашивается формула …., но неожиданность состоит в том, что:

Эта необычное правило (как, собственно, и другие) следует из определения производной . Но с теорией мы пока повременим – сейчас важнее научиться решать:

Пример 5

Найти производную функции

Здесь у нас произведение двух функций, зависящих от .
Сначала применяем наше странное правило, а затем превращаем функции по таблице производных:

Сложно? Вовсе нет, вполне доступно даже для чайника.

Пример 6

Найти производную функции

В данной функции содержится сумма и произведение двух функций – квадратного трехчлена и логарифма . Со школы мы помним, что умножение и деление имеют приоритет перед сложением и вычитанием.

Здесь всё так же. СНАЧАЛА мы используем правило дифференцирования произведения:

Теперь для скобки используем два первых правила:

В результате применения правил дифференцирования под штрихами у нас остались только элементарные функции, по таблице производных превращаем их в другие функции:


Готово.

При определенном опыте нахождения производных, простые производные вроде не обязательно расписывать так подробно. Вообще, они обычно решаются устно, и сразу записывается, что .

Пример 7

Найти производную функции

Это пример для самостоятельного решения (ответ в конце урока)

4) Производная частного функций

В потолке открылся люк, не пугайся, это глюк.
А вот это вот суровая действительность:

Пример 8

Найти производную функции

Чего здесь только нет – сумма, разность, произведение, дробь…. С чего бы начать?! Есть сомнения, нет сомнений, но, В ЛЮБОМ СЛУЧАЕ для начала рисуем скобочки и справа вверху ставим штрих:

Теперь смотрим на выражение в скобках, как бы его упростить? В данном случае замечаем множитель, который согласно первому правилу целесообразно вынести за знак производной.

Наверное, понятие производной знакомо каждому из нас ещё со школы. Обычно у учеников возникают трудности с пониманием этой, несомненно, очень важной вещи. Она активно применяется в различных областях жизни людей, и многие инженерные разработки были основаны именно на математических расчётах, полученных с помощью производной. Но прежде чем перейти к разбору того, что же такое производные чисел, как их вычислять и где они нам пригодятся, окунёмся немного в историю.

История

Являющееся основой математического анализа, было открыто (лучше даже сказать "изобретено", потому что в природе оно как таковое не существовало) Исааком Ньютоном, которого мы все знаем по открытию закона всемирного тяготения. Именно он впервые применил в физике это понятие для связывания природы скорости и ускорения тел. И многие учёные до сих пор восхваляют Ньютона за это великолепное изобретение, ведь по сути он изобрёл основу дифференциального и интегрального исчисления, фактически основу целой области математики под названием "математический анализ". Будь в то время Нобелевская премия, Ньютон с большой вероятностью получил бы её несколько раз.

Не обошлось и без других великих умов. Кроме Ньютона над развитием производной и интеграла потрудились такие именитые гении математики, как Леонард Эйлер, Луи Лагранж и Готфрид Лейбниц. Именно благодаря им мы получили теорию в таком виде, в котором она существует по сей день. Кстати, это Лейбниц открыл геометрический смысл производной, которая оказалась ничем иным, как тангенсом угла наклона касательной к графику функции.

Что же такое производные чисел? Немного повторим то, что проходили в школе.

Что такое производная?

Определять это понятие можно несколькими разными способами. Самое простое объяснение: производная - это скорость изменения функции. Представим график какой-нибудь функции y от x. Если это не прямая, то она имеет некоторые изгибы в графике, периоды возрастания и убывания. Если брать какой-нибудь бесконечно малый промежуток этого графика, он будет представлять собой отрезок прямой. Так вот, отношение размера этого бесконечно малого отрезка по координате y к размеру по координате x и будет являться производной данной функции в данной точке. Если рассматривать функцию в целом, а не в конкретной точке, то мы получим функцию производной, то есть некую зависимость игрек от икс.

К тому же кроме как скорости изменения функции есть ещё и геометрический смысл. О нём мы сейчас и поговорим.

Геометрический смысл

Производные чисел сами по себе представляют собой некое число, которое без должного понимания не несёт никакого смысла. Оказывается, производная не только показывает скорость роста или уменьшения функции, а также тангенс угла наклона касательной к графику функции в данной точке. Не совсем понятное определение. Разберём его поподробнее. Допустим, у нас есть график какой-либо функции (для интереса возьмём кривую). На ней есть бесконечное множество точек, но есть такие области, где только одна единственная точка имеет максимум или минимум. Через любую такую точку можно провести прямую, которая была бы перпендикулярна графику функции в этой точке. Такая линия будет называться касательной. Допустим, мы провели её до пересечения с осью OX. Так вот, полученный между касательной и осью OX угол и будет определяться производной. А точнее, тангенс этого угла будет равняться ей.

Поговорим немного о частных случаях и разберём производные чисел.

Частные случаи

Как мы уже говорили, производные чисел - это значения производной в конкретной точке. Вот например, возьмём функцию y=x 2 . Производная х - число, а в общем случае - функция, равная 2*x. Если нам необходимо вычислить производную, скажем, в точке x 0 = 1, то получаем y"(1)=2*1=2. Всё очень просто. Интересный случай представляет производная Вдаваться в подробное объяснение того, что такое комплексное число, мы не будем. Скажем лишь, что это число, которое содержит в себе так называемую мнимую единицу - число, квадрат которого равен -1. Вычисление такой производной возможно только при наличии следующих условий:

1) Должны существовать частные производные первого порядка от действительной и мнимой части по игрек и по икс.

2) Выполняются условия Коши-Римана, связанные с равенством частных производных, описанных в первом пункте.

Другим интересным случаем, хотя и не таким сложным как предыдущий, является производная отрицательного числа. На самом деле любое отрицательное число можно представить как положительное, умноженное на -1. Ну а производная постоянной и функции равна постоянной, умноженной на производную функции.

Интересно будет узнать о роли производной в повседневной жизни, и именно это сейчас и обсудим.

Применение

Наверное, каждый из нас хоть раз в жизни ловит себя на мысли, что математика вряд ли пригодится ему. А такая сложная штука, как производная, наверное, вообще не имеет применения. На самом деле, математика - и все её плоды развивает в основном физика, химия, астрономия и даже экономика. Производная положила начало который дал нам возможность делать выводы из графиков функций, и мы научились интерпретировать законы природы и обращать их в свою пользу благодаря ему.

Заключение

Конечно, не каждому, возможно, пригодится производная в реальной жизни. Но математика развивает логику, которая уж точно будет нужна. Не зря ведь математику называют царицей наук: из неё складываются основы понимания других областей знаний.

Вычисление производной - одна из самых важных операций в дифференциальном исчислении. Ниже приводится таблица нахождения производных простых функций. Более сложные правила дифференцирования смотрите в других уроках:
  • Таблица производных экспоненциальных и логарифмических функций
Приведенные формулы используйте как справочные значения. Они помогут в решении дифференциальных уравнений и задач. На картинке, в таблице производных простых функций, приведена "шпаргалка" основных случаев нахождения производной в понятном для применения виде, рядом с ним даны пояснения для каждого случая.

Производные простых функций

1. Производная от числа равна нулю
с´ = 0
Пример:
5´ = 0

Пояснение :
Производная показывает скорость изменения значения функции при изменении аргумента. Поскольку число никак не меняется ни при каких условиях - скорость его изменения всегда равна нулю.

2. Производная переменной равна единице
x´ = 1

Пояснение :
При каждом приращении аргумента (х) на единицу значение функции (результата вычислений) увеличивается на эту же самую величину. Таким образом, скорость изменения значения функции y = x точно равна скорости изменения значения аргумента.

3. Производная переменной и множителя равна этому множителю
сx´ = с
Пример:
(3x)´ = 3
(2x)´ = 2
Пояснение :
В данном случае, при каждом изменении аргумента функции (х ) ее значение (y) растет в с раз. Таким образом, скорость изменения значения функции по отношению к скорости изменения аргумента точно равно величине с .

Откуда следует, что
(cx + b)" = c
то есть дифференциал линейной функции y=kx+b равен угловому коэффициенту наклона прямой (k).


4. Производная переменной по модулю равна частному этой переменной к ее модулю
|x|" = x / |x| при условии, что х ≠ 0
Пояснение :
Поскольку производная переменной (см. формулу 2) равна единице, то производная модуля отличается лишь тем, что значение скорости изменения функции меняется на противоположное при пересечении точки начала координат (попробуйте нарисовать график функции y = |x| и убедитесь в этом сами. Именно такое значение и возвращает выражение x / |x| . Когда x < 0 оно равно (-1), а когда x > 0 - единице. То есть при отрицательных значениях переменной х при каждом увеличении изменении аргумента значение функции уменьшается на точно такое же значение, а при положительных - наоборот, возрастает, но точно на такое же значение.

5. Производная переменной в степени равна произведению числа этой степени и переменной в степени, уменьшенной на единицу
(x c)"= cx c-1 , при условии, что x c и сx c-1 ,определены а с ≠ 0
Пример:
(x 2)" = 2x
(x 3)" = 3x 2
Для запоминания формулы :
Снесите степень переменной "вниз" как множитель, а потом уменьшите саму степень на единицу. Например, для x 2 - двойка оказалась впереди икса, а потом уменьшенная степень (2-1=1) просто дала нам 2х. То же самое произошло для x 3 - тройку "спускаем вниз", уменьшаем ее на единицу и вместо куба имеем квадрат, то есть 3x 2 . Немного "не научно", но очень просто запомнить.

6. Производная дроби 1/х
(1/х)" = - 1 / x 2
Пример:
Поскольку дробь можно представить как возведение в отрицательную степень
(1/x)" = (x -1)" , тогда можно применить формулу из правила 5 таблицы производных
(x -1)" = -1x -2 = - 1 / х 2

7. Производная дроби с переменной произвольной степени в знаменателе
(1 / x c)" = - c / x c+1
Пример:
(1 / x 2)" = - 2 / x 3

8. Производная корня (производная переменной под квадратным корнем)
(√x)" = 1 / (2√x) или 1/2 х -1/2
Пример:
(√x)" = (х 1/2)" значит можно применить формулу из правила 5
(х 1/2)" = 1/2 х -1/2 = 1 / (2√х)

9. Производная переменной под корнем произвольной степени
(n √x)" = 1 / (n n √x n-1)

Производная

Вычисление производной от математической функции (дифференцирование) является очень частой задачей при решении высшей математики. Для простых (элементарных) математических функций это является довольно простым делом, поскольку уже давно составлены и легко доступны таблицы производных для элементарных функций. Однако, нахождение производной сложной математической функции не является тривиальной задачей и часто требует значительных усилий и временных затрат.

Найти производную онлайн

Наш онлайн сервис позволяет избавиться от бессмысленных долгих вычислений и найти производную онлайн за одно мгновение. Причем воспользовавшись нашим сервисом, расположенным на сайте www.сайт , вы можете вычислить производную онлайн как от элементарной функции, так и от очень сложной, не имеющей решения в аналитическом виде. Главными преимуществами нашего сайта по сравнению с другими являются: 1) нет жестких требований к способу ввода математической функции для вычисления производной (например при вводе функции синус икс вы можете ввести ее как sin x либо sin(x) либо sin[x] и т.д.); 2) вычисление производной онлайн происходит мгновенно в режиме онлайн и абсолютно бесплатно ; 3) мы позволяем находить производную от функции любого порядка , изменить порядок производной очень легко и понятно; 4) мы позволяем найти производную почти от любой математической функции онлайн, даже очень сложной, недоступной для решения другими сервисами. Выдаваемый ответ всегда точен и не может содержать ошибки.

Использование нашего сервера позволит вам 1) вычислить производную онлайн за вас, избавив от длительных и утомительных вычислений, в ходе которых вы могли бы допустить ошибку или опечатку; 2) если вы вычисляете производную математической функции самостоятельно, то мы предоставляем вам возможность сравнить полученный результат с вычислениями нашего сервиса и убедиться в верности решения либо отыскать закравшуюся ошибку; 3)пользоваться нашим сервисом вместо использования таблиц производных простых функций, где зачастую необходимо время для нахождения нужной функции.

Всё что от вас требуется, чтобы найти производную онлайн - это воспользоваться нашим сервисом на

Если следовать определению, то производная функции в точке — это предел отношения приращения функции Δy к приращению аргумента Δx :

Вроде бы все понятно. Но попробуйте посчитать по этой формуле, скажем, производную функции f (x ) = x 2 + (2x + 3) · e x · sin x . Если все делать по определению, то через пару страниц вычислений вы просто уснете. Поэтому существуют более простые и эффективные способы.

Для начала заметим, что из всего многообразия функций можно выделить так называемые элементарные функции. Это относительно простые выражения, производные которых давно вычислены и занесены в таблицу. Такие функции достаточно просто запомнить — вместе с их производными.

Производные элементарных функций

Элементарные функции — это все, что перечислено ниже. Производные этих функций надо знать наизусть. Тем более что заучить их совсем несложно — на то они и элементарные.

Итак, производные элементарных функций:

Название Функция Производная
Константа f (x ) = C , C R 0 (да-да, ноль!)
Степень с рациональным показателем f (x ) = x n n · x n − 1
Синус f (x ) = sin x cos x
Косинус f (x ) = cos x − sin x (минус синус)
Тангенс f (x ) = tg x 1/cos 2 x
Котангенс f (x ) = ctg x − 1/sin 2 x
Натуральный логарифм f (x ) = ln x 1/x
Произвольный логарифм f (x ) = log a x 1/(x · ln a )
Показательная функция f (x ) = e x e x (ничего не изменилось)

Если элементарную функцию умножить на произвольную постоянную, то производная новой функции тоже легко считается:

(C · f )’ = C · f ’.

В общем, константы можно выносить за знак производной. Например:

(2x 3)’ = 2 · (x 3)’ = 2 · 3x 2 = 6x 2 .

Очевидно, элементарные функции можно складывать друг с другом, умножать, делить — и многое другое. Так появятся новые функции, уже не особо элементарные, но тоже дифференцируемые по определенным правилам. Эти правила рассмотрены ниже.

Производная суммы и разности

Пусть даны функции f (x ) и g (x ), производные которых нам известны. К примеру, можно взять элементарные функции, которые рассмотрены выше. Тогда можно найти производную суммы и разности этих функций:

  1. (f + g )’ = f ’ + g
  2. (f g )’ = f ’ − g

Итак, производная суммы (разности) двух функций равна сумме (разности) производных. Слагаемых может быть больше. Например, (f + g + h )’ = f ’ + g ’ + h ’.

Строго говоря, в алгебре не существует понятия «вычитание». Есть понятие «отрицательный элемент». Поэтому разность f g можно переписать как сумму f + (−1) · g , и тогда останется лишь одна формула — производная суммы.

f (x ) = x 2 + sin x; g (x ) = x 4 + 2x 2 − 3.

Функция f (x ) — это сумма двух элементарных функций, поэтому:

f ’(x ) = (x 2 + sin x )’ = (x 2)’ + (sin x )’ = 2x + cos x;

Аналогично рассуждаем для функции g (x ). Только там уже три слагаемых (с точки зрения алгебры):

g ’(x ) = (x 4 + 2x 2 − 3)’ = (x 4 + 2x 2 + (−3))’ = (x 4)’ + (2x 2)’ + (−3)’ = 4x 3 + 4x + 0 = 4x · (x 2 + 1).

Ответ:
f ’(x ) = 2x + cos x;
g ’(x ) = 4x · (x 2 + 1).

Производная произведения

Математика — наука логичная, поэтому многие считают, что если производная суммы равна сумме производных, то производная произведения strike ">равна произведению производных. А вот фиг вам! Производная произведения считается совсем по другой формуле. А именно:

(f · g ) ’ = f ’ · g + f · g

Формула несложная, но ее часто забывают. И не только школьники, но и студенты. Результат — неправильно решенные задачи.

Задача. Найти производные функций: f (x ) = x 3 · cos x; g (x ) = (x 2 + 7x − 7) · e x .

Функция f (x ) представляет собой произведение двух элементарных функций, поэтому все просто:

f ’(x ) = (x 3 · cos x )’ = (x 3)’ · cos x + x 3 · (cos x )’ = 3x 2 · cos x + x 3 · (− sin x ) = x 2 · (3cos x x · sin x )

У функции g (x ) первый множитель чуть посложней, но общая схема от этого не меняется. Очевидно, первый множитель функции g (x ) представляет собой многочлен, и его производная — это производная суммы. Имеем:

g ’(x ) = ((x 2 + 7x − 7) · e x )’ = (x 2 + 7x − 7)’ · e x + (x 2 + 7x − 7) · (e x )’ = (2x + 7) · e x + (x 2 + 7x − 7) · e x = e x · (2x + 7 + x 2 + 7x −7) = (x 2 + 9x ) · e x = x (x + 9) · e x .

Ответ:
f ’(x ) = x 2 · (3cos x x · sin x );
g ’(x ) = x (x + 9) · e x .

Обратите внимание, что на последнем шаге производная раскладывается на множители. Формально этого делать не нужно, однако большинство производных вычисляются не сами по себе, а чтобы исследовать функцию. А значит, дальше производная будет приравниваться к нулю, будут выясняться ее знаки и так далее. Для такого дела лучше иметь выражение, разложенное на множители.

Если есть две функции f (x ) и g (x ), причем g (x ) ≠ 0 на интересующем нас множестве, можно определить новую функцию h (x ) = f (x )/g (x ). Для такой функции тоже можно найти производную:

Неслабо, да? Откуда взялся минус? Почему g 2 ? А вот так! Это одна из самых сложных формул — без бутылки не разберешься. Поэтому лучше изучать ее на конкретных примерах.

Задача. Найти производные функций:

В числителе и знаменателе каждой дроби стоят элементарные функции, поэтому все, что нам нужно — это формула производной частного:


По традиции, разложим числитель на множители — это значительно упростит ответ:

Сложная функция — это не обязательно формула длиной в полкилометра. Например, достаточно взять функцию f (x ) = sin x и заменить переменную x , скажем, на x 2 + ln x . Получится f (x ) = sin (x 2 + ln x ) — это и есть сложная функция. У нее тоже есть производная, однако найти ее по правилам, рассмотренным выше, не получится.

Как быть? В таких случаях помогает замена переменной и формула производной сложной функции:

f ’(x ) = f ’(t ) · t ’, если x заменяется на t (x ).

Как правило, с пониманием этой формулы дело обстоит еще более печально, чем с производной частного. Поэтому ее тоже лучше объяснить на конкретных примерах, с подробным описанием каждого шага.

Задача. Найти производные функций: f (x ) = e 2x + 3 ; g (x ) = sin (x 2 + ln x )

Заметим, что если в функции f (x ) вместо выражения 2x + 3 будет просто x , то получится элементарная функция f (x ) = e x . Поэтому делаем замену: пусть 2x + 3 = t , f (x ) = f (t ) = e t . Ищем производную сложной функции по формуле:

f ’(x ) = f ’(t ) · t ’ = (e t )’ · t ’ = e t · t

А теперь — внимание! Выполняем обратную замену: t = 2x + 3. Получим:

f ’(x ) = e t · t ’ = e 2x + 3 · (2x + 3)’ = e 2x + 3 · 2 = 2 · e 2x + 3

Теперь разберемся с функцией g (x ). Очевидно, надо заменить x 2 + ln x = t . Имеем:

g ’(x ) = g ’(t ) · t ’ = (sin t )’ · t ’ = cos t · t

Обратная замена: t = x 2 + ln x . Тогда:

g ’(x ) = cos (x 2 + ln x ) · (x 2 + ln x )’ = cos (x 2 + ln x ) · (2x + 1/x ).

Вот и все! Как видно из последнего выражения, вся задача свелась к вычислению производной суммы.

Ответ:
f ’(x ) = 2 · e 2x + 3 ;
g ’(x ) = (2x + 1/x ) · cos (x 2 + ln x ).

Очень часто на своих уроках вместо термина «производная» я использую слово «штрих». Например, штрих от суммы равен сумме штрихов. Так понятнее? Ну, вот и хорошо.

Таким образом, вычисление производной сводится к избавлению от этих самых штрихов по правилам, рассмотренным выше. В качестве последнего примера вернемся к производной степени с рациональным показателем:

(x n )’ = n · x n − 1

Немногие знают, что в роли n вполне может выступать дробное число. Например, корень — это x 0,5 . А что, если под корнем будет стоять что-нибудь навороченное? Снова получится сложная функция — такие конструкции любят давать на контрольных работах и экзаменах.

Задача. Найти производную функции:

Для начала перепишем корень в виде степени с рациональным показателем:

f (x ) = (x 2 + 8x − 7) 0,5 .

Теперь делаем замену: пусть x 2 + 8x − 7 = t . Находим производную по формуле:

f ’(x ) = f ’(t ) · t ’ = (t 0,5)’ · t ’ = 0,5 · t −0,5 · t ’.

Делаем обратную замену: t = x 2 + 8x − 7. Имеем:

f ’(x ) = 0,5 · (x 2 + 8x − 7) −0,5 · (x 2 + 8x − 7)’ = 0,5 · (2x + 8) · (x 2 + 8x − 7) −0,5 .

Наконец, возвращаемся к корням:

Публикации по теме