Графики. Квадратичная функция. Квадратичная функция График функции ax2 bx c свойства

Задания на свойства и графики квадратичной функции вызывают, как показывает практика, серьезные затруднения. Это довольно странно, ибо квадратичную функцию проходят в 8 классе, а потом всю первую четверть 9-го класса "вымучивают" свойства параболы и строят ее графики для различных параметров.

Это связано с тем, что заставляя учащихся строить параболы, практически не уделяют времени на "чтение" графиков, то есть не практикуют осмысление информации, полученной с картинки. Видимо, предполагается, что, построив десятка два графиков, сообразительный школьник сам обнаружит и сформулирует связь коэффициентов в формуле и внешний вид графика. На практике так не получается. Для подобного обобщения необходим серьезный опыт математических мини исследований, которым большинство девятиклассников, конечно, не обладает. А между тем, в ГИА предлагают именно по графику определить знаки коэффициентов.

Не будем требовать от школьников невозможного и просто предложим один из алгоритмов решения подобных задач.

Итак, функция вида y = ax 2 + bx + c называется квадратичной, графиком ее является парабола. Как следует из названия, главным слагаемым является ax 2 . То есть а не должно равняться нулю, остальные коэффициенты (b и с ) нулю равняться могут.

Посмотрим, как влияют на внешний вид параболы знаки ее коэффициентов.

Самая простая зависимость для коэффициента а . Большинство школьников уверенно отвечает: " если а > 0, то ветви параболы направлены вверх, а если а < 0, - то вниз". Совершенно верно. Ниже приведен график квадратичной функции, у которой а > 0.

y = 0,5x 2 - 3x + 1

В данном случае а = 0,5

А теперь для а < 0:

y = - 0,5x2 - 3x + 1

В данном случае а = - 0,5

Влияние коэффициента с тоже достаточно легко проследить. Представим, что мы хотим найти значение функции в точке х = 0. Подставим ноль в формулу:

y = a 0 2 + b 0 + c = c . Получается, что у = с . То есть с - это ордината точки пересечения параболы с осью у. Как правило, эту точку легко найти на графике. И определить выше нуля она лежит или ниже. То есть с > 0 или с < 0.

с > 0:

y = x 2 + 4x + 3

с < 0

y = x 2 + 4x - 3

Соответственно, если с = 0, то парабола обязательно будет проходить через начало координат:

y = x 2 + 4x


Сложнее с параметром b . Точка, по которой мы будем его находить, зависит не только от b но и от а . Это вершина параболы. Ее абсцисса (координата по оси х ) находится по формуле х в = - b/(2а) . Таким образом, b = - 2ах в . То есть, действуем следующим образом: на графике находим вершину параболы, определяем знак ее абсциссы, то есть смотрим правее нуля (х в > 0) или левее (х в < 0) она лежит.

Однако это не все. Надо еще обратить внимание на знак коэффициента а . То есть посмотреть, куда направлены ветви параболы. И только после этого по формуле b = - 2ах в определить знак b .

Рассмотрим пример:

Ветви направлены вверх, значит а > 0, парабола пересекает ось у ниже нуля, значит с < 0, вершина параболы лежит правее нуля. Следовательно, х в > 0. Значит b = - 2ах в = -++ = -. b < 0. Окончательно имеем: а > 0, b < 0, с < 0.

Конспект урока по алгебре для 8 класса средней общеобразовательной школы

Тема урока : Функция


Цель урока:

· Образовательная: определить понятие квадратичной функции вида (сравнить графики функций и ), показать формулу нахождения координат вершины параболы (научить применять данную формулу на практике); сформировать умение определения свойств квадратичной функции по графику (нахождение оси симметрии, координат вершины параболы, координат точек пересечения графика с осями координат).

· Развивающая : развитие математической речи, умения правильно, последовательно и рационально излагать свои мысли; развитие навыка правильной записи математического текста при помощи символов и обозначений; развитие аналитического мышления; развитие познавательной деятельности учащихся через умение анализировать, систематизировать и обобщать материал.

· Воспитательная : воспитание самостоятельности, умения выслушать других, формирование аккуратности и внимания в письменной математической речи.

Тип урока : изучение нового материала.

Методы обучения:

обобщенно-репродуктивный, индуктивно-эвристический.

Требования к знаниям и умениям учащихся

знать, что такое квадратичная функция вида , формулу нахождения координат вершины параболы; уметь находить координаты вершины параболы, координаты точек пересечения графика функции с осями координат, по графику функции определять свойства квадратичной функции.

Оборудование :


План урока

I. Организационный момент (1-2 мин)

II. Актуализация знаний (10 мин)

III. Изложение нового материала (15 мин)

IV. Закрепление нового материала (12 мин)

V. Подведение итогов (3 мин)

VI. Задание на дом (2 мин)


Ход урока

I. Организационный момент

Приветствие, проверка отсутствующих, сбор тетрадей.

II. Актуализация знаний

Учитель : На сегодняшнем уроке мы изучим новую тему: "Функция ". Но для начала повторим ранее изученный материал.

Фронтальный опрос:

1) Что называется квадратичной функцией? (Функция , где заданные действительные числа, , действительная переменная, называется квадратичной функцией.)

2) Что является графиком квадратичной функции? (Графиком квадратичной функции является парабола.)

3) Что такое нули квадратичной функции? (Нули квадратичной функции – значения , при которых она обращается в нуль.)

4) Перечислите свойства функции . (Значения функции положительны при и равно нулю при ; график функции симметричен относительно ос ординат; при функция возрастает, при - убывает.)

5) Перечислите свойства функции . (Если , то функция принимает положительные значения при , если , то функция принимает отрицательные значения при , значение функции равно 0 только; парабола симметрична относительно оси ординат; если , то функция возрастает при и убывает при , если , то функция возрастает при , убывает – при .)


III. Изложение нового материала

Учитель : Приступим к изучению нового материала. Откройте тетради, запишите число и тему урока. Обратите внимание на доску.

Запись на доске : Число.

Функция .

Учитель : На доске вы видите два графика функций. Первый график , а второй . Давайте попробуем сравнить их.

Свойства функции вы знаете. На их основании, и сравнивая наши графики, можно выделить свойства функции .

Итак, как вы думаете, от чего будет зависеть направление ветвей параболы ?

Ученики: Направление ветвей обеих парабол будет зависеть от коэффициента .

Учитель: Совершенно верно. Так же можно заметить, что у обеих парабол есть ось симметрии. У первого графика функции, что является осью симметрии?

Ученики: У параболы вида осью симметрии является ось ординат.

Учитель: Верно. А что является осью симметрии параболы


Ученики: Осью симметрии параболы является линия, которая проходит через вершину параболы, параллельно оси ординат.

Учитель : Правильно. Итак, осью симметрии графика функции будем называть прямую, проходящую через вершину параболы, параллельную оси ординат.

А вершина параболы – это точка с координатами . Они определяются по формуле:

Запишите формулу в тетрадь и обведите в рамочку.

Запись на доске и в тетрадях

Координаты вершины параболы.

Учитель : Теперь, чтобы было более понятно, рассмотрим пример.

Пример 1 : Найдите координаты вершины параболы .

Решение: По формуле


Учитель : Как мы уже отметили, ось симметрии проходит через вершину параболы. Посмотрите на доску. Начертите этот рисунок в тетради.

Запись на доске и в тетрадях:

Учитель: На чертеже: - уравнение оси симметрии параболы с вершиной в точке , где абсцисса вершины параболы.

Рассмотрим пример.

Пример 2: По графику функции определите уравнение оси симметрии параболы.


Уравнение оси симметрии имеет вид: , значит, уравнение оси симметрии данной параболы .

Ответ: - уравнение оси симметрии.

IV.Закрепление нового материала

Учитель : На доске записаны задания, которые необходимо решить в классе.

Запись на доске : № 609(3), 612(1), 613(3)

Учитель: Но сначала решим пример не из учебника. Решать будем у доски.

Пример 1: Найти координаты вершины параболы

Решение: По формуле

Ответ: координаты вершины параболы.

Пример 2: Найти координаты точек пересечения параболы с осями координат.

Решение: 1) С осью :


Т.е.

По теореме Виета:

Точки пересечения с осью абсцисс (1;0) и (2;0).

2) С осью :

Точка пересечения с осью ординат (0;2).

Ответ: (1;0), (2;0), (0;2) – координаты точек пересечения с осями координат.

№ 609(3). Найти координаты вершины параболы

Публикации по теме